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Abstract

Background: A learning task recurrently perceived as easy (or hard) may cause poor learning results. Gamer data such as errors,
attempts, or time to finish a challenge are widely used to estimate the perceived difficulty level. In other contexts, pupillometry
is widely used to measure cognitive load (mental effort); hence, this may describe the perceived task difficulty.

Objective: This study aims to assess the use of task-evoked pupillary responses to measure the cognitive load measure for
describing the difficulty levels in a video game. In addition, it proposes an image filter to better estimate baseline pupil size and
to reduce the screen luminescence effect.

Methods: We conducted an experiment that compares the baseline estimated from our filter against that estimated from common
approaches. Then, a classifier with different pupil features was used to classify the difficulty of a data set containing information
from students playing a video game for practicing math fractions.

Results: We observed that the proposed filter better estimates a baseline. Mauchly’s test of sphericity indicated that the assumption

of sphericity had been violated (χ2
14=0.05; P=.001); therefore, a Greenhouse-Geisser correction was used (ε=0.47). There was a

significant difference in mean pupil diameter change (MPDC) estimated from different baseline images with the scramble filter
(F5,78=30.965; P<.001). Moreover, according to the Wilcoxon signed rank test, pupillary response features that better describe
the difficulty level were MPDC (z=−2.15; P=.03) and peak dilation (z=−3.58; P<.001). A random forest classifier for easy and
hard levels of difficulty showed an accuracy of 75% when the gamer data were used, but the accuracy increased to 87.5% when
pupillary measurements were included.

Conclusions: The screen luminescence effect on pupil size is reduced with a scrambled filter on the background video game
image. Finally, pupillary response data can improve classifier accuracy for the perceived difficulty of levels in educational video
games.

(JMIR Serious Games 2021;9(1):e21620) doi: 10.2196/21620
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Introduction

Overview
An educational video game (EVG) is a video game that provides
learning or training value to the player. Potential contributions

of video games cover each of the three main fields of
psychology: the affective (awakening feelings), the connate
(aggressive or impulsive behavior), and the cognitive
(learning-related skills) [1].
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Video games have been demonstrated to be effective for
improving working memory, mental rotation skills, and
geometry performance [2]. Some of the effective features of
educational video games include a clear goal, an adequate level
of difficulty, quick-moving stimuli, and integrated instructions
[3].

Several works have used EVGs to foster fraction understanding
and to assess students [4,5]. However, our research focuses on
the cognitive load (mental effort) generated by reasoning tasks
[6] about math fractions; this is a direct way to measure the
difficulty perceived by the EVG's player.

Video game difficulty refers to the amount of skill required by
the player to progress through the game experience. Studying
how to set an adequate difficulty level has attracted particular
attention in the educational video games field [7,8]. Basic
approaches to setting difficulty include allowing users to
manually select levels and increasing the difficulty at a steady
rate over the course of the game, with earlier levels being easier
and later levels being harder [9]. Manually adapting difficulty
or designing an incremental-difficulty solution could cause
serious problems; for instance, the player may not know how
they will perform before playing a given level, or the predefined
change rate could be slower or faster than required by the player.

On the other hand, dynamic difficulty adjustment or dynamic
difficulty balancing changes the game behavior according to

the skill level of the players. For this purpose, the dynamic
difficulty adjustment requires evaluation of the player's
performance (through game scores, time, number of errors,
player's decisions, etc) and adjustment of a set of game variables
that regulate difficulty [10]. It has been shown that a dynamic
approach that uses gamer behavior data presents better learning
outcomes than an incremental difficulty approach [7].

As a step toward finding an imperceptible difficulty control,
this paper proposes to use pupil dilation to detect very easy (or
hard) activities. It is known that pupil dilation reflects activity
in the brain as cognitive load—that is, the total amount of mental
effort (information processing) induced by reasoning tasks or
involving memory resources [6,11].

Background

The Impact of Difficulty on Learning
The flow experience model, proposed by Csikszentmihalyi [12],
marks an achieved balance of arousal-increasing and
arousal-decreasing processes. As shown in Figure 1, the flow
model describes this balance in terms of the fit between
perceived challenges and skills: an activity wherein challenges
predominate increases arousal; an activity wherein skills
predominate reduces arousal. Thus, a synchrony of challenges
and skills permits a state of deep involvement, while the pitfalls
of either over- or under-arousal (ie, anxiety or boredom) are
avoided [12].

Figure 1. Flow experience model of Mihaly Csikszentmihalyi [12].

The dynamic flow passing through states a → c → e shown in
Figure 1 is the optimal path for increasing difficulty. However,
b1 → d1 are states of anxiety that demand new learning skills
to return to optimal flow. Moreover, b2 → d2 are states of
boredom that need more challenges to return to optimal flow.

Several studies have supported that the rate of change of pupil
diameter is related to task difficulty.

Pupillary Responses
The eye can be seen as a camera, with the pupil as the eye
aperture, and it involves the iris activity [13]. The iris movement
is controlled by the activity of two muscles, the dilator and the
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sphincter. Sphincter activation causes the pupil to constrict (ie,
miosis), and this is largely under parasympathetic control, while
the dilator muscle receives mostly sympathetic innervation and
causes the pupil to dilate (ie, mydriasis) [14].

Light has a relevant role in the retina and the pupil response.
The size of the iris determines the amount of light that is
captured by the system. The ambient light level largely
determines the steady-state size of the pupil. Rapid increments
in light flux on the retina cause a brisk constriction of the pupil.
This constriction will depend on the size of the light stimulus,
its luminance contrast, onset temporal characteristics, and
location in the visual field [14].

Health factors also affect pupillary responses. Pupillary
constriction is decreased in major depression [15]. Schizophrenia
is associated with a significant decline in working memory
capacity, and an additional moderate decline is associated with
aging, but pupillary responses evoked by a working memory
task were not related to schizophrenia severity [16]. Among
other factors, the consumption of caffeine or alcoholic beverages
was associated with significant increases in pupil size [17,18].
Finally, pupil dilation can be caused by amphetamines and
diphenhydramine, and pupil constriction by clonidine and
opioids [19].

For good observation of pupil response during EVG tasks, all
these conditions must be carefully observed in the experiment
design.

Cognitive Load and Pupillary Response
The cognitive load (mental activity) imposed by tasks has a
pupillary response, known as a task-evoked pupillary response
(TEPR) [20]. TEPRs occurs shortly after the onset of a task and
subside quickly after the mental activity is terminated. The
TEPR depends on several factors; for instance, the response is
greater for novice participants doing an arithmetic task than for
an expert because novices require more mental effort [21]. Then,
through pupillometry (measuring the pupil diameter), one can
decide whether a challenge is adequate for the skills of a learner
(Figure 1); that is, we can balance a video game to maximize
the learning outcomes.

Pupil diameter is widely used to study cognitive load.
Researchers have studied this relationship in different tasks,
such as driving a vehicle while listening to a dialog, reasoning
through math exercises, memorizing numbers, and perceiving
visual stimuli [6,22,23].

Concerning industrial areas, cognitive load has been used in
automotive and healthcare applications to optimize user's
decision-making tasks [21,24]. Most studies in these fields are
oriented to discover how to preserve attention and mental work
on primary tasks and how to reduce it on secondary tasks to
avoid critical errors. In addition, cognitive load has been used
in video game studies without significant results, mainly due
to changes in screen luminescence.

Playing EVG involves memorization and reasoning tasks that
are associated with cognitive load. This paper uses pupillary
response data to assess cognitive load in educational video
games.

Beatty [6] points out that pupillary responses occur at short
latencies following the onset of mental processing and subside
quickly once processing is terminated. Most of the latency is
due to slow iris muscle constriction. Different features have
been used to evaluate cognitive load with pupillary responses
such as mean pupil diameter change (MPDC), average
percentage change in pupil size (APCPS), peak dilation (PD),
and latency to peak (LP) [13,24-26].

Estimating Pupillary Responses
Individual differences in pupil size have been well documented;
for example, pupil size decreases linearly as a function of age
at all illuminance levels, and students high in cognitive ability
have a larger pupil size [27,28]. These differences must be
considered when studying factors that dilate the pupil; for this
purpose, researchers calculate a pupil baseline interval for each
individual separately. Then, the pupil change is estimated by
contrasting information from the baseline and testing intervals.
In the baseline period, users fixate on a predefined screen before
the stimulus is presented. Baseline duration ranges from 400
milliseconds to 10 seconds [6,29-32]. In general, the variation
in the baseline duration should play no substantial role in
reporting pupil dilation [33]. Unsworth et al [32] suggest that
better results can be obtained by using a longer duration; hence,
they use 5 seconds to estimate the baseline.

A common practice is to use a neutral image, either black, gray,
or white [31,34]; a gray image is more effective to reduce screen
luminescence [35]. Using a neutral image is good enough for
controlled tests that use luminance-controlled images, but there
are significant changes in pupil size due to luminance when
participants play video games [36,37]. Studying the pupil
dilation induced by mental activity when participants are
exposed to environmental illumination changes is a challenge.
For instance, several authors have reported that pupillary
response features are directly correlated to cognitive load. Other
authors, however, do not observe such correlations, and they
suggest that this effect could be caused by luminance changes
[38,39].

Obtaining a baseline for each trial rather than for a whole test
session is a common practice [33]; this is an applicable solution
for settings where the screen luminance remains stable for
certain periods (eg, for a video game stage that is mainly
dominated by the background). For these cases, the baseline is
usually calculated from data generated by observing a scrambled
image (ie, one image obtained by applying a scrambling scheme
to a representative image in the period test).

Image scrambling [40] has two objectives: to transform a
meaningful image into a meaningless or disordered image and
to have the same mean intensity for the scrambled and original
images.

The nonlinear relationship between luminance changes and
pupil size is one of the main difficulties when studying cognitive
load in real conditions. Wong et al [41] study four approaches
(ignoring, excluding, compensating, or using pupillary light
reflex features) to mitigate the luminance change in cognitive
load measurements. They found that ignoring the luminance
change is the worst option. This paper proposes an initial
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solution for studying cognitive load in real scenarios that is
complementary to the approaches in the aforementioned study
[41].

We hypothesize that a better baseline can be estimated from an
image that maintains both the mean and local intensity. We
tested grid scrambled images for obtaining the baseline. A grid
scrambled image is generated by selecting a representative
image within the measurement period, splitting it into a n × m
grid (n columns and m rows), and finally, scrambling each
region to conform the image.

The contribution of this paper is twofold: we propose a grid
scramble filter to reduce the effect of screen luminescence, and
we test the hypothesis that using pupillary response data
improves the classification of easy (or hard) difficulty levels.

The rest of this paper is organized as follows: the Methods
section describes the experimental setup, including materials,
participants, metrics, and procedure; the Results section
discusses the results of each experiment; and finally, the
Conclusions and Further Work section concludes this paper.

Methods

The goal of this study is to analyze the pupillary response and
gamer data for different difficulty levels in a math EVG to
evaluate the significant differences in perceived difficulty for
participants with intermediate math skills. Selected relevant
features are used to classify difficulty.

Materials
An eye-tracking device, the “EyeTribe” model ET1000 with 60
Hz sampling frequency, was used in a screen (24“ extended
monitor) with a resolution of 1440 × 960 pixels, and both were
connected to a laptop.

The eye tracker was located 50-60 cm from the participant’s
face. A calibration was done before each test/play session by
using the EyeTribe software development kit (twelve points).
To remove atypical values, a Hampel filter was used in the
preprocessing stage.

To avoid pupil dilation caused by sunlight, the windows in the
testing room were covered with blackout curtains, which have
a high light-blocking effect. We used the same brightness and
settings of the screen throughout. In addition, no sounds and
visitors were allowed in the experimentation area.

The educational Refraction video game [42,43] was used in the
experiments, as shown in Figure 2. For research, “Refraction”
is of particular interest because it is open-access, it provides a
natural context for students to create fractions through splitting,
and the log data for the game allows the use of learning analytics
methods to examine the splitting process in detail [43,44].
Moreover, the design of the game allows us to modify
mathematical and game difficulty semi-independently [42].

This game focuses on teaching fractions and discovering optimal
learning pathways for math learning. It let gamers bend, split,
and redirect lasers to power spaceships filled with lost animals.
The general integrated instruction is “Help free as many animals
as you can by expanding your knowledge of fractions.” As
shown in Figure 2, game elements in Refraction are origins,
which generate laser beams; targets, which receive the laser
beams and contain spaceships with lost animals waiting to be
released; pipe bends that change the laser direction; 2- or 3-way
splitters that split the laser into two or three equal parts (eg, the

operation of a 3-way splitter over half of a laser is ½ ÷ 3 = );
and obstacles that prevent the passage of any laser beams.
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Figure 2. The Refraction EVG developed by the research group of the Center for Game Science [42,43]. The game mechanic is to use the pieces on
the right to split lasers into fractional pieces and redirect them to the target spaceships.

Four levels of the Refraction game were selected for experiments
and organized into two worlds: world A (levels L1a and L2a),
and world B (levels L3b and L4b). As shown in Table 1, levels

that almost have the same number of game elements were
grouped into the same world (ie, L1a and L2a have about the
same difficulty level).

Table 1. Number of game elements in the selected levels.

LevelElement

World BWorld A

L4bL3bL2aL1a

3111Origins

3221Targets

1122Two-way splitter (orange)

3211Three-way splitter (orange)

3333Pipe bends (blue)

10131010Obstacles

23221918Total elements

Experiment 1
The objective of this experiment was to select the best baseline
image (ie, a baseline image without semantic information that
results in a smaller pupil-size change after the transition from

the baseline image to the in-test image). Instances of tested
baseline images are shown in Figure 3; they included the widely
used white, black, and scramble backgrounds, but also grid
scramble images of different sizes: 8×6, 10×10, and 20×20.
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Figure 3. Baseline images tested. (Left) Baseline images can be uniform such as (a) black and (b) white, or can depend on the initial image like (c)
scramble, (d) 8×6 grid scramble, (e) 10×10 grid scramble, and (f) 20×20 grid scramble. (Right) The in-test image.

Participants
All participants were asked about their general health and were
excluded if they wore contact lenses or glasses with more than
one power, had eye surgery or abnormalities (eg, lazy eye,
strabismus, nystagmus), or used medication or drugs. All
participants were Hispanic and brown-eyed. Participants were
not asked for personal information to preserve anonymity. A
total of 14 volunteers (4 female, 10 male) between 16 and 37
years old (mean 21.81, SD 7.2) participated in this experiment.

Procedure
As illustrated in Figure 4, participants observed a randomly
selected baseline image (an image from Figure 3) for 8 seconds
(pupillary response data collected in the last 2 seconds are used
as the baseline interval), and then they observed the in-test
image for 8 seconds (pupillary data from the last 2 seconds are
used as the testing interval).

The MPDC is used to select the best baseline image (the MPDC
definition is shown in Table 2). This procedure was repeated
until all the baseline images were shown to participants.

Figure 4. The procedure used to generate pupillary response data for evaluating baselines images. First, the baseline image was shown on the screen
for 8 seconds, and then the in-test image was shown.
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Table 2. Pupillary and gamer features studied in this experiment.

DescriptionFeature

Total errors (TE) is the number of events performed in the wrong way (eg, the laser beam
value does not match with the input value) on a level.

TE

Time to complete a stage (TC) is the time required to complete a given level.TC

Number of changes of position (CP). A change of position is defined as the movement
of a game element once it has been introduced in the gameplay—the area where the video
game elements are dragged and dropped.

CP

Attempts (A) is the number of attempts used by the gamer to complete a given level.A

The mean pupil diameter change is obtained by averaging the relevant data points in the
measurement interval (time of the stage) and subtracting the mean diameter obtained in
the baseline period [24-26].

MPDC

Peak dilation (PD) is defined as the maximal dilation obtained in the measurement interval
time of the level [13]. First, mean baseline is established, then the single maximum value
from the set of data points in the measurement interval time of level is selected.

PD

Latency to peak (LP) reflects the amount of time elapsed between the beginning of the
measurement interval and emergence of peak dilation [13].

LP

Percentage change in pupil size (PCPS) is calculated as the difference between the mea-
sured pupil size and a baseline pupil size divided by the baseline pupil size [22,31,45].
The average PCPS (APCPS) is the average of PCPS in the measurement interval time
of the selected level.

APCPS

Statistical Analysis
After Mauchly's test of sphericity, repeated-measures analysis
of variance was performed on the normally distributed variables
among MPDC values to explore the difference between the
black, white, scramble, scramble 8×6, scramble 10×10, and
scramble 20×20 baseline images. The Bonferroni test was used
to make post hoc pairwise comparisons.

Experiment 2
The objective of this experiment was twofold: to evaluate which
features are more related to the difficulty level, and to test the
classification accuracy obtained by using different subsets of
features. Studied features (both pupillary and gamer) of the
video game levels (L1a, L2a, L3b, and L4b) are defined in Table
2.

Participants
A total of 20 volunteers (9 female, 11 male) between 23 and 31
years old (mean 27.16, SD 2.6) participated in experiment 2.
As in the first experiment, we did not include volunteers with
some characteristics that would make pupil-size estimation
difficult. None of the subjects who participated in experiment
2 also participated in experiment 1.

Procedure
As shown in Figure 5, the procedure consists of four phases:
(1) participants observed the baseline image of world A for 8
seconds; (2) participants played the world A levels (L1a and
L2a) without time restrictions; (3) participants observed the
baseline image of world B for 8 seconds; and finally, (4) they
played the world B levels (L3b and L4b) without time
restrictions. The pupil baseline was estimated from the data of
the last 2 seconds before playing a new world. Pupil size and
gamer behavior data were collected along with each play
session.
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Figure 5. The procedure used to evaluate features against difficulty levels in World A (easy), World B (hard).

After obtaining features, all information was integrated into a
data set τ = {(Xi, Yi), i = 1,...,n}, where Xi corresponds to the
uniform-length vector containing features Xi = (TEi, TCi, CPi,
Ai, MPDCi, PDi, LPi, APCPSi) and Yi corresponds to the label
associated to each level difficulty of the world A and world B.
Each register of this data set is generated from a player and a
single level. The following sets were defined: G = {TE, TC,
CP, A}, which includes all game behavior data features, and S
= {MPDC, PD, LP, APCPS}, which includes all pupillary
features. Let G’⊆G and S’⊆S be the sets of features with a
significant difference between worlds A and B.

From the 20 participants, 3 (15%) were randomly selected, and
their registers in τ were used to train a random forest classifier

[46] using different sets of features. Random forest classifier
was selected because it is an ensemble meta-algorithm that
improves accuracy and avoids overfitting by training on different
random samples of the data. Registers in τ associated with the
rest of the participants were then used as the testing set.

Statistical Analysis
Features were tested for normality; in this case, the Shapiro-Wilk
test was used (because of the low size of the sample), Results
show that the variables are not normally distributed. Then, the
Wilcoxon signed rank test was used to detect significant
differences in variables. Differences between values were
considered significant when P<.05.
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Results

Experiment 1
Mauchly's test of sphericity indicated that the assumption of

sphericity had been violated (χ2
14=0.05; P<.01); therefore, a

Greenhouse-Geisser correction was used (ε=0.47). The results
show that there was a significant difference between MPDC
estimated from different baseline images (F5,78=30.965; P<.001).

Table 3 shows the descriptive statistics for MPDC calculated
for each baseline image. As expected, the 20×20 scrambled

filter has the lowest average MPDC (0.32 pixels) as it more
closely resembles the original image. Post hoc analyses using
the Bonferroni post hoc criterion for significance indicated that
there were no MPDC differences for different grid sizes, but
there were significant MPDC differences between the group of
images generated by the grid scrambled filter, and the group of
conventional images used to estimate the baseline (white, black,
and scrambled). We choose the 8×6 grid scramble operation
for generating baseline images in experiment 2 because there
are no differences in MPDC between grid scramble images, and
it better obscures the meaning of the in-test image.

Table 3. Results for the baseline image test (experiment 1). Different superindices indicate significant intergroup differences.

MPDCa (pixels), mean (SD)Baseline image

3.356 (2.122)White1

−1.754 (1.452)Black2

1.620 (0.746)Scramble3

0.471 (0.891)Grid scramble 8×64

0.455 (1.392)Grid scramble 10×104

0.320 (0.856)Grid scramble 20×204

aMPDC: mean pupil diameter change.

Experiment 2
We did not find any feature with significant differences in
measurements between levels of the same world, neither in the
levels of world A (L1a, L2a) nor in the levels of world B (L3b,
L4b). However, significant differences between worlds were
found for the following features: TE between world A (median
0.00) and world B (median 2.50) (z=−2.9; P=.004); TC between
world A (median 43,486) and world B (median 83,970)

(z=−3.198; P=.001); MPDC between world A (median 2.25)
and world B (median 2.90) (z=−2.159; P=.03); and PD between
world A (median 5.1) and world B (median 18) (z=−3.587;
P<.001). Table 4 summarizes the statistics for pupillary and
gamer features and the Wilcoxon signed rank results.

On the other hand, Table 5 summarizes the accuracy of the
random tree classifier. As can be seen, the PD feature alone
gives an accuracy of 62.5%. The best accuracy was obtained
by using the G’ ∪ P’ features, with an accuracy of 87.5%.

Table 4. Median values for pupillary and gamer measurements, and the Wilcoxon signed rank results.

P valuezWorld B, medianWorld A, medianFeature

.004−2.9002.50.00TE

.001−3.19883,97043,486TC

.70−0.3821.000.00CP

.78−0.2821.000.50A

.03−2.1592.902.25MPDC

<.001−3.58718.005.10PD

.33−0.97351.5040.50LP

.36−0.9260.1360.135APCPS
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Table 5. Results for a random forest classifier using different sets of features.

Accuracy (%)FeaturesSet

75.0TE, TC, CP, AG

75.0TE, TCG’

50.0MPDC, PD, LP, APCPSP

62.5PDP’

87.5TE, TC, PDG’ ∪ P’

Discussion

Experiment 1
Pupil-size changes at the beginning of the EVG (when going
from the baseline image to the in-test image) can cause the
participant's pupil to expand. A change caused by the screen
luminescence would hide the change caused by the cognitive
load produced by the reasoning task. This change was analyzed
using the MPDC in experiment 1; it was found that baseline
images with uniform colors (white and black) result in larger
changes in pupil size (Table 3). The sign values of the MPDC
are aligned with the optics of the human eye, as it is posited
that pupil size increases when the intensity of environmental
light decreases (in the case of black or white images); these
changes occur even if baseline images resembles the general
illumination conditions of the testing scenario such as the
scrambled operation.

One could expect that a grayscale image, with the same average
intensities as the in-test images, gives a good baseline estimator.
Results of experiment 1 show that the conventional scrambled
image (which has about the same intensities) just gives a rough
estimation of the baseline. Alternatively, the proposed grid
scrambled operation better estimates the baseline in comparison
to the conventional scramble image. A possible explanation is
that retinal ganglion cells (the output neurons of the retina)
adapt to both image contrast (the range of image intensities)
and to spatial correlations within the scene, even at constant
mean intensity [47]. Hence, predicting the pupil size of an
individual in different image scenes is challenging. John et al
[48] propose a calibration protocol where the participant sees
uniform slides of varying grayscale intensities in the range
0-255. We state that a better model could be found by using
local and global information from the images.

Experiment 2
Many studies have shown that splitting objects is a promising
way to teach fractions [43,49]. In any context, splitting items
into halves is much more common than dividing into thirds;
this could explain why the students prefer halving and struggle
with creating thirds [43]. The Refraction game uses the process
of splitting to teach fractions. As shown in Table 1, levels of
world A (easy) have fewer 3-way splitters than levels of world
B (hard). This means that participants must solve more
operations that involve thirds in world B. The difficulty of the
Refraction game not only depends on the mathematical
operations but on the spatial difficulty. The spatial difficulty is
directly correlated to the number of sources and targets; the
number of source/target elements is smaller in the world A than

in the world B. Results also evidence this change of difficulty,
as we observed statistical differences in features G’—including
TE and TC.

A random tree classifier that only uses the best game features,
G’, only gives an accuracy of 75.0%. This accuracy was
improved to 87.5% by using the peak dilation. The maximal
dilation obtained in the measurement interval is a natural feature
of many factors that dilate the pupil, including the cognitive
load.

Pupillary features can be classified into subtractive (those that
eliminate individual differences by subtracting the baseline
value from the measurement interval, such as MPDC, PD, and
LP) and divisive (those that calculate a ratio of a measurement
value to baseline, such as APCPS). Subtractive features can be
categorized into size-related, such as MPDC and PD, or
time-related, such as LP. Results show that the subtractive
size-related features, MPDC and PD, better describe the
difficulty level.

Hunicke [50] states that difficulty adjustments must be
implemented in a way such that users do not perceive difficulty
changes. However, gamer data are recorded after human
perception of difficulty; that is, a control that uses gamer data
collected after the player finished each level could not
completely fulfill the requirement of being imperceptible.

The proposed approach improves the accuracy of classification
of the perceived difficulty to 87.5%, in contrast to 62% with
only pupillometry. These results are aligned to other studies
that suggest the relationship between pupil change and the level
of a game; for instance, by using the Akaike Information
Criterion, Strauch et al [51] propose that the pupil change is a
quadratic function of the levels of Pong.

Video game difficulty adjustment is game data–dependent (ie,
different games require different features). We argue that a
generic framework for dynamic difficulty adjustment could be
designed by fusing generic game features (such as score, elapsed
time, etc) with the information provided by pupillometry. In
this way, we can take advantage of ocular data as a general,
noninvasive, near real-time option to sense the user perception
of difficulty.

In a traditional pupillometry experiment, the researcher
maintains tight control over luminance while manipulating a
specific cognitive variable. Reilly et al [52] conducted the
reverse approach (ie, holding cognitive task demands constant
while manipulating luminance). We believe that the reverse
approach must be used to obtain a model of the participants’
pupil size in the initial calibration stage by using the grid
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scrambled images, and then a subtractive approach should be
used during the gameplay stage.

Conclusions and Further Work
This paper proposes a grid scramble filter to obtain a baseline
image that reduces the effect of the screen light reflex on a
participant's pupil size. This filter simulates both the local and
the mean luminance of a given image. To hide the meaning of
an image, the 8×6 grid scramble filter can be used for tests that
reasonably keep the same background in each interval. We
consider that a more general baseline can be obtained by
modeling luminescence factors that affect pupil size. Such a
model could be used to estimate cognitive factors that affect
the pupils in any setting (eg, a commercial video game).

Gamer data are a valuable resource for estimating the difficulty
of EVGs, but adding cognitive load data measured by pupillary

response data improves the accuracy of classifying the difficulty
of game levels.

Using the human perception features from ocular data such as
blinks, eye-fixations, and eye-saccade to measure the cognitive
load may improve the classification accuracy of difficulty levels
and gather imperceptible changes that gamer data can omit
[53,54].

A key issue with approaches that estimate a baseline, like the
proposed one, is that indoor light conditions and monitor
brightness must be the same during the game time. Playing a
game in specific conditions is restrictive; to address this, we
are working on a model that relates luminescence to different
screen configurations (instead of a baseline) This approach can
be used in virtual reality headsets. The proposed approach can
be included in a more elaborated calibration stage that tests
different models of pupil change due to luminance, as in a
previous study by Lara-Alvarez and Gonzalez-Herrera [55].
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