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Abstract

Background: Increasing evidence supports the use of virtual reality systems to improve upper limb motor functions in individuals
with cerebral palsy. While virtual reality offers the possibility to include key components to promote motor learning, it remains
unclear if and how motor learning principles are incorporated into the development of rehabilitation interventions using virtual
reality.

Objective: The objective of this study was to determine the extent to which motor learning principles are integrated into virtual
reality interventions targeting upper limb function in individuals with cerebral palsy.

Methods: A systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines. The search was performed in 10 databases using a combination of keywords related to cerebral
palsy, virtual reality, video games, and rehabilitation. Studies were divided into 2 categories: commercial video game platforms
and devices and custom virtual reality systems. Study quality was assessed using the modified Downs and Black checklist.

Results: The initial search yielded 1497 publications. A total of 26 studies from 30 publications were included, with most studies
classified as “fair” according to the modified Downs and Black checklist. The majority of studies provided enhanced feedback
and variable practice and used functionally relevant and motivating virtual tasks. The dosage varied greatly (total training time
ranged from 300 to 3360 minutes), with only 6 studies reporting the number of movement repetitions per session. The difficulty
progression and the assessment of skills retention and transfer were poorly incorporated, especially for the commercial video
games.

Conclusions: Motor learning principles should be better integrated into the development of future virtual reality systems for
optimal upper limb motor recovery in individuals with cerebral palsy.

Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42020151982;
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020151982

(JMIR Serious Games 2021;9(2):e23822) doi: 10.2196/23822
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Introduction

Cerebral palsy (CP) is the most common neuromotor disorder
in children, with a prevalence ranging from 1.5 to 2.5 per 1000
births [1-3], that continues throughout adulthood. It is defined
as “a group of permanent disorders of the development of
movement and posture, causing activity limitation, that are
attributed to non-progressive disturbances that occurred in the
developing fetal or infant brain” [4]. Due to structural brain
abnormalities, individuals with CP have a wide range of
sensorimotor impairments, including muscle tone disorders [5],
sensory deficits [6-8], and deficits in interjoint coordination [9],
motor execution, and planning [10,11]. These impairments
ultimately lead to altered upper limb function. Due to the
important contribution of the arms and hands in daily activities,
deficits in upper limb functions ultimately may result in a poorer
quality of life [12].

To improve both motor function and quality of life in individuals
with CP, moderate to strong evidence supports motor
learning-based approaches in rehabilitation [13,14]. Motor
learning is defined as a set of processes based on principles of
neuroplasticity associated with practice or experience that lead
to relatively permanent motor changes [15,16]. The brain’s
inherent ability to organize itself and to form new connections
between neurons can be exploited with therapeutic rehabilitation
approaches based on motor learning principles [17,18]. Key
components of motor learning–based approaches include but
are not limited to (1) intensive rehabilitation interventions
involving a high number of task repetitions, (2) progressive
incremental increases in task difficulty, and (3) salient
interventions to enhance motivation and engagement in therapy
[15,19]. The provision of extrinsic feedback on either the
movement quality or the motor performance can also promote
motor learning [20]. Extrinsic feedback can compensate for
reduced availability and/or processing ability of intrinsic
feedback in individuals with CP. However, provision of extrinsic
feedback is often not individualized to the motor abilities of
each individual nor standardized [20]. Additional challenges to
incorporating motor learning principles in clinical practice
include (1) accountability for the heterogeneity and severity of
the sensorimotor impairments observed in CP, (2)
personalization of interventions based on the individual’s needs
or goals, and (3) delivery of exercises that are both challenging
and enjoyable [21].

Use of technology has helped to address some of the
aforementioned challenges with rehabilitation interventions.
Technology-based interventions including virtual reality and
active video games have gained popularity in rehabilitation,
with many systems designed to encourage upper limb function
[22-24]. Virtual rehabilitation refers to interventions that are
built on virtual reality platforms to meet rehabilitation goals. It
encompasses a continuum of technologies of different types
and technical complexities ranging from fully immersive 3D
virtual reality viewed using commercially available
head-mounted displays (eg, Oculus Rift; Facebook

Technologies, LLC) to active video games or exergames (eg,
commercial video games used for rehabilitation purposes or
active video games primarily used for physical activity) [25].
Rehabilitation using virtual reality–based platforms offers the
possibility to deliver high-intensity training in a multimodal
training environment [26]. Virtual reality interventions also
provide a unique opportunity to customize and standardize the
levels of task difficulty by modifying the spatial and temporal
constraints and the cognitive challenge. Feedback provision on
the individual abilities and delivery modes can be easily
manipulated. The task outcome and quality can be automatically
recorded, which is useful to both clinicians and researchers [27].
Virtual reality has been shown to be safe and ecologically valid
for the rehabilitation of individuals with CP [28-30]. The novelty
of virtual reality technology and the interactive and engaging
gaming characteristics are key components that provide a joyful
training environment to sustain and enhance motivation to
treatment [31,32]. Therefore, the attributes of virtual
environments such as motivation, repetitive practice, and
enhanced feedback make them an ideal modality to facilitate
the incorporation of motor learning principles into the treatment
of individuals with CP.

Several systematic reviews and one meta-analysis investigated
the impact of virtual reality interventions on upper limb motor
recovery in children and adolescents with CP [13,22,27,33-35].
Their results suggest, to an extent, that virtual reality can be
effective and motivating for children with CP. Another literature
review specifically looked at the effectiveness of virtual reality
on motor learning in children with CP [36]. The results support
virtual reality interventions to improve motor learning and
encourage skill transfer to real-life situations. A current
knowledge gap in the literature relates to which exact motor
learning principles are incorporated into virtual reality–based
platforms used for upper limb rehabilitation in individuals with
CP (children, adolescents, and adults). The limited incorporation
of key motor learning principles in therapy (eg, treatment
intensity and specificity, feedback provision and delivery, and
difficulty progression) could explain differences observed
between studies and also limit the potential for motor learning
in individuals with CP. This systematic review aims to identify
the extent to which motor learning principles are integrated into
virtual reality interventions targeting upper limb function in
individuals with CP. The incorporation of motor learning
principles will be identified for commercial video game
platforms and devices and custom virtual reality systems for
rehabilitation to help guide clinical decision making.

Methods

Protocol and Registration
This systematic review followed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines, and results are reported using the PRISMA checklist
[37]. The protocol for this systematic review was registered on
PROSPERO (CRD42020151982).
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Eligibility Criteria
We included publications related to the effectiveness of virtual
reality interventions on upper limb sensorimotor function at the
levels of body function/structure or activity limitations according
to the International Classification of Functioning, Disability
and Health in individuals with CP. We only included
peer-reviewed publications in English or French in which the
majority of the sample included individuals with CP (children
or adults). We excluded publications that (1) used solely
qualitative methodologies (eg, focus groups and interviews),
(2) focused on the development of the virtual reality
intervention, (3) used virtual reality as an assessment tool, or
(4) were reviews, meta-analyses, or commentaries.

Information Sources
The following electronic databases were searched on August
22, 2019, and updated on July 5, 2020, using a combination of
keywords related to CP, rehabilitation, video games, and virtual
reality: MEDLINE, Embase, CINAHL, Web of Science, Google
Scholar, OTseeker, Physiotherapy Evidence Database, IEEE
Xplore, Scopus, and Cochrane Library, and the Cochrane Central
Register of Controlled Trials. The reference lists of articles of
interest were also searched for additional references. The search
strategy was developed for the MEDLINE database and adapted
for other databases. Various combinations of keywords and
Medical Subject Headings (MeSH) or Embase subject headings
(Emtree) related to virtual reality or video games, rehabilitation,
and CP were used (see Multimedia Appendix 1 for the detailed
search strategy). No time limit regarding the date of publication
was applied to the search strategy.

Search and Study Selection
The search strategy was executed by one researcher (MD), and
all publications from each database were extracted using citation
management software (Endnote X9; Clarivate). Any duplications
were removed. Titles and abstracts were screened independently
by two researchers (MD and KF) based on the inclusion and
exclusion criteria. For all potential eligible studies, full texts
were retrieved, and eligibility was assessed by the same two
researchers. Any conflict was resolved by discussion.

Data Collection Process and Data Items
For all publications meeting the inclusion criteria, one researcher
(MD) extracted the following information into an Excel
(Microsoft Inc) spreadsheet: author/date, study design,
participants, sample size, virtual reality system, delivery method,
number of movement repetitions, intensity, task specificity,
difficulty progression, type of practice, type of feedback,
feedback delivery schedule, motivation, motor recovery outcome
measures, changes in upper limb motor function (body
function/structure or activity limitation levels), assessment of

skills retention, and assessment of transfer of skills. Another
researcher (KF) validated the data extraction by reading all
included publications and confirming that the data extracted
were accurate and complete. Publications presenting the results
from the same group of participants were considered a single
study and the results were extracted together. Since there is a
lack of clear definition of motor learning principles in CP, we
used the definition and key descriptors of Maier et al [38] for
dosage, type of practice, feedback provision, and task specificity.
For treatment intensity and duration, the number of movement
repetitions was extracted and the number of minutes of treatment
was computed using the treatment duration, frequency, and
number of weeks of the intervention. Data were analyzed
separately for commercial video game platforms and devices
and custom virtual reality systems for rehabilitation. Commercial
video game platforms and devices included salon game consoles
and commercially available applications on a tablet. Custom
virtual reality systems for rehabilitation included commercially
available or custom virtual reality software programmed for
rehabilitation purposes. Studies using special hardware (eg,
instrumented gloves or robotic devices) or repurposed
commercial gaming hardware (eg, the Microsoft Kinect camera)
were included in the custom virtual reality software category.

Risk of Bias in Individual Studies
Two authors (SKS and MTR) analyzed the quality of each study,
and conflicts were resolved by discussion. The 27-item modified
version [39] of the original Downs and Black checklist [40]
helped assess the quality of the included randomized and
nonrandomized studies. The overall quality of the research was
scored out of 28 based on the following criteria: reporting,
internal validity, power, and external validity. Scores on the
modified Downs and Black checklist were classified as
“excellent” (scores of 24-28), “good” (scores of 19-23), “fair”
(scores of 14-18), or “poor” (scores ≤13) [41]. The Downs and
Black checklist was chosen over other measures, such as the
Effective Public Health Practice Project [42], because it
considers sample size in the total score calculation and enables
studies to be quantitatively classified into different categories
based on the total score. The Downs and Black checklist has
previously been used in studies involving virtual reality
interventions for upper limb rehabilitation [43].

Results

The database search yielded 1497 publications, and 749
publications were screened for eligibility after duplicates were
removed. After full-text review, 26 studies from 30 publications
were included (see Figure 1 for flow diagram and reasons for
exclusion).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow chart of study selection.

Quality Assessment
The quality ratings of the publications based on the Downs and
Black checklist are shown in Table 1. Only 17 studies were

rated because the remaining studies were either case studies or
short papers. Of the 17 studies, 2 were rated as good, 14 as fair,
and 1 as poor.

Table 1. Quality assessment of the reviewed studies based on the 27-item modified version [39] of the Downs and Black checklist [40].

Quality of studyDowns and Black score/28First author and publication year

Good21Avcil et al, 2020 [44]

Fair16Bedair et al, 2016 [45]

Fair15Chen et al, 2007 [46]

Fair13Sharan et al, 2012 [47]

Fair16El-Shamy, 2018 [48]

Fair16Fluet et al, 2009 [49]

Fair15Fluet et al, 2010 [50]

Fair17Hernández et al, 2018 [51]

Fair14Jannink et al, 2008 [52]

Fair17Kassee et al, 2017 [53]

Fair14Odle et al, 2009 [54]

Fair18Rostami et al, 2012 [55]

Good19Sahin et al, 2020 [56]

Fair13Sandlund et al, 2014 [57]

Fair18Turconi et al, 2016 [58]

Poor12Weightman et al, 2011 [59]

Fair13Winkels et al, 2013 [60]
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Characteristics of the Virtual Reality Systems
Of the 26 studies, 9 (35%) used commercial video game
platforms and devices, such as the Nintendo Wii, the Sony
PlayStation 2 or 3, Xbox consoles (Microsoft Corporation), or
commercial applications [44,45,47,52,53,58,60-62]. Custom
virtual reality systems for rehabilitation were used in 17 studies
(65% [46,48,50,51,54-56,59,63-71]). Commercially available
virtual reality systems designed for rehabilitation purposes were
used in 5 studies (19%): ArmeoSpring (Hocoma) combined
with virtual games [48]; E-Link Evaluation and Exercise System
(Biometrics Ltd) [55]; IREX (GestureTek Health) [66]; Timocco
[64]; and YouGrabber (YouRehab) [67]. Seven studies (27%)
used custom-based games combined with commercially
available accessories (ie, Microsoft Kinect camera [56,68,72],
webcam [54], force-feedback motion controller [51], or
instrumented gloves [69,70]). Custom virtual reality systems
designed for rehabilitation research purposes were used in 4
studies (15%) [49,50,59,65,71]. Display media used to view
the virtual environments included stereoscopic glasses to enable
3D media display view [49,50,71] and television or computer
monitors to view 2D virtual environments with various 3D

rendering features (ie, shadow, drop lines, etc). Virtual
environments ranged from a simple display of reaching targets
in a 2D plane to a detailed replication of real-life environments,
such as a tennis court or a kitchen. None of the studies used
immersive virtual reality through a head-mounted display.

Study Characteristics
The study settings and targeted participants varied greatly.
Sample sizes ranged from 1 to 30 participants in the intervention
group, with 12 studies (46%) having a sample size of 5
participants or fewer. While our search strategy did not exclude
studies conducted in adults with CP, none of the studies targeted
participants over 18 years of age (see Figure 2 for detailed study
characteristics). All studies targeted school-aged children (over
4 years of age) or adolescents. In 17 studies (65%), treatment
was  de l ive red  in  a  l abora to ry  se t t ing
[46,48,50,55,58,61,65-67,71] or a rehabilitation center
[45,47,51,52,54,60,68]. In 6 studies (23%), the virtual
reality–based intervention was delivered at home using either
telerehabilitation technologies (ie, videoconferencing and remote
monitoring [64,69,70]) or a prescribed exercise program
[53,57,59].

Figure 2. Characteristics of the reviewed studies according to (A) study design, (B) participants’ age groups (preschoolers: aged 0-4 years; children:
aged 4-12 years; teenagers: aged 13-18 years), (C) virtual reality (VR) system type, and (D) delivery environment. RCT: randomized controlled trial.

Motor Learning Principles in Studies Using
Commercial Video Game Platforms and Devices
Among the 9 studies (35%) using commercial video game
platforms and devices, the length of sessions varied from 20 to
60 minutes (Figure 3 and Multimedia Appendix 1). Frequency
ranged from 2 to 5 sessions per week for 3 to 12 weeks, with a
total treatment time ranging from 360 to 1440 minutes. Only
Kassee et al [53] discussed the number of movement repetitions,
suggesting that the number of movement repetitions in the
virtual reality group was comparable with that in the resistance

training group (144 repetitions per session). Jannink et al [52]
indicated that the intensity level was moderate but did not define
how intensity was measured in their study. Task-specific
training, in which movements were goal-oriented or relevant
for activities of daily living, was used in all 9 studies and the
majority simulated competitive sports. Examples of task-specific
training included playing various sports (eg, tennis, bowling,
sword fighting), controlling a moving car, piloting a spaceship,
and catching falling balls. Variable practice was delivered in
all studies using commercial video game platforms and devices
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by using frequent changes of tasks. However, none of the studies
clearly specified the type of practice offered with the
intervention. None of the publications reported whether the

games were adapted to match the participant’s capacity and, if
so, how they were adapted and how the difficulty levels were
changed.

Figure 3. Percentage of commercial video game platforms and devices and custom virtual reality systems for rehabilitation integrating the principles
of motor learning.

Visual and auditory feedback were provided in all studies as a
display of total score and/or reward sounds. Additional haptic
feedback (vibration) was offered by a motion controller held in
the most-affected hand in 2 studies [44,53]. All studies delivered
continuous feedback. For virtual interventions, an example of

continuous feedback is the provision of knowledge of results
after each trial, such as the rate of success or total score.
Motivation with the intervention was assessed in 6 studies (23%)
using questionnaires (eg, a visual analog scale for motivation
and a participant and parent feedback questionnaire), therapists’
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observations, or semistructured interviews. High motivation to
practice in a virtual environment was reported
[47,52,53,58,60,62]. However, Sandlund et al [57] noted that
children’s interest in gaming faded somewhat over time. Winkels
et al [60] observed that motivation varied between games and
children. In 2 studies, greater motivation was observed in the
Wii training group than in a control group [47,53]. Retention
of motor skills was assessed in only 2 studies [53,61]; the results
of both studies suggested that motor skills were retained 4 weeks
after the intervention. Transfer of skills was only assessed in 1
study, with the skills shown to be transferred to a similar
reaching task [57].

Motor Learning Principles in Studies Using Custom
Virtual Reality Systems for Rehabilitation
In all 17 studies (65%) using custom virtual reality systems for
rehabilitation, the treatment frequency and intervention dosage
were clearly reported, with the total training time ranging from
300 to 3360 minutes. The number of movement repetitions was
reported in only 5 studies (range of 45 to 550 repetitions per
session) [46,50,51,59,72]. Nine studies (35%) delivered
task-specific training with functionally relevant tasks
[46,48-50,56,64,66-68,71]. Thirteen studies (50%) delivered
variable practice, with 4 studies (15%) also delivering massed
practice (eg, minimal time between sessions and large number
of movement repetitions to a single target) [46,49-51,59] and
1 study (4%) using random practice (ie, randomized tasks to
maintain patients' interest) [70]. Two studies (8%) delivered
constant practice [64,65], while the remaining studies did not
specify the type of practice used. Task difficulty was
increas ingly  progressed  in  12  s tudies
[46,48,50,51,55,59,65,67-71] by different methods, including
a modification of the ranges of motion required to accomplish
the task, an increase or decrease in the amount of assistive and/or
resistive force, and a change in the speed, accuracy, or target
characteristics. Difficulty levels were progressed by the system
using an algorithm, based on the judgment of a therapist
according to task success, according to difficulties reported by
the participants, or based on preset difficulty levels (eg, easy,
medium, hard).

Multisensory feedback that combined visual and auditory and/or
haptic feedback was offered in 11 studies (42%)
[46,48-51,55,59,63,64,70,71,73]. Six studies (23%) provided
only visual feedback [54,56,64-66,68]. Feedback was delivered
continuously in all studies, but 1 study did not report on
feedback frequency [51]. Motivation was assessed in 6 studies
(23%) using subjective assessment or semistructured interviews
[46,50,51,64,69,71]. The results suggested that the virtual
environments were motivating, but Chen et al [46] and
Hernández et al [51] reported that motivation levels were highly
variable from one child to another, ranging from low to high.
Retention of motor skills was assessed in only 4 studies
[46,55,65,66]; in 3 of the 4 studies, the motor skills gained by
the virtual reality intervention were maintained or improved at
1 to 3 months [46,55,66]. Three studies assessed the transfer of
skills [51,59,66]. Hernández et al [51] reported that all children
made significant progress on their self-selected goals, which
largely targeted activities of daily living and leisure. In another
study [66], 66% of the children showed a transfer of skills to a

similar reach-to-grasp task for all kinematic variables.
Weightman et al [59] noticed improvements in activities of
daily living not directly targeted by the intervention.

Discussion

Principal Findings
The objective of this systematic review was to examine the
extent to which motor learning principles are integrated into
virtual reality interventions in individuals with CP. A total of
26 studies met the inclusion criteria, of which 9 used commercial
video game platforms and devices and 17 developed custom
virtual reality systems for rehabilitation. Overall, the studies
were considered fair based on the Downs and Black checklist,
given that the majority of them were small pilot or
proof-of-concept studies. Nonetheless, the novelty of this review
is that virtual reality is well-suited to incorporate motor learning
principles into rehabilitation interventions targeted at children
and adolescents with CP. Proper integration of motor learning
principles is important, as demonstrated by the fact that the most
effective therapies (ie, constraint-induced movement therapy
and bimanual therapy) for improving upper limb motor functions
are themselves based on motor learning principles and principles
of neuroplasticity [13,74,75]. Enhanced feedback provision,
variable practice, task specificity, and motivation were the motor
learning principles most frequently adopted in virtual reality
interventions for children and adolescents with CP. Dosage
varied greatly from one study to another with only a few studies
reporting the number of movement repetitions per session. The
application of some principles (ie, difficulty progression and
assessment of skills retention and transfer) were poorly
integrated, especially in commercial video game platforms and
devices.

It is widely accepted that rehabilitation interventions should be
delivered at a high intensity (dose, frequency, and duration of
training) to engage neuroplastic mechanisms [15].
Unfortunately, our results showed that many of the reviewed
studies did not provide sufficient information on the number of
repetitions performed per session. Although intensive and
repetitive practice is important, repetitive motor activity alone
is insufficient to induce experience-dependent plasticity [76].
Virtual reality enables the possibility to deliver high-intensity
practice of engaging and meaningful tasks along with relevant
feedback. This promotes a problem-solving approach known
to be useful for enhanced rehabilitation outcomes. Additionally,
a close collaboration between game developers, academia, and
clinicians in the development of both commercial and custom
virtual reality systems would help identify the clinical needs
and optimize virtual reality interventions for individuals with
CP [77].

Extrinsic Feedback
In both the commercial and custom virtual reality systems,
feedback provision was well integrated. Feedback plays a crucial
role to enhance motor learning and motivation level [78,79].
All studies reported providing feedback at a continuous
frequency, yet provision of continuous feedback is often not
optimal for motor learning. Continuous feedback limits the
opportunity for learning to occur through exploration and
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increases the dependence of the user on the feedback to improve
specific goals, thereby affecting the ability of learning to detect
and correct errors [80]. While continuous feedback may increase
skills acquisition, retention of improvements is rarely sustained
over time beyond the cue that prompted them (ie, feedback).
Alternatively, provision of faded feedback (ie, gradual decrease
in feedback provision as the learner improves) or self-controlled
feedback may encourage the participant to explore and
internalize new movement patterns, thus increasing the retention
of these newly acquired skills [81,82]. Based on the limited
evidence on the feedback modality that should be prioritized,
a combination of multimodal feedback (ie, visual, auditory, and
haptic) is proposed to be more effective for improving motor
performance [80,83]. All studies using commercial video game
platforms and devices implemented multimodal feedback. In
contrast, approximately one-third of the studies using custom
virtual reality systems delivered solely visual feedback. This
could be because of the technical complexity required to
program multimodal feedback and the lack of knowledge about
which feedback modality should be provided in rehabilitation
settings. Feedback should be implemented in a structured
manner considering the individual capacities and errors made
and thus allow the progression of difficulty throughout the
intervention period. The use of theoretical frameworks, such as
the framework developed by Schüler et al [84], can help
designers and researchers to identify the beneficial components
of virtual reality systems for specific treatment goals.

Progression of Difficulty
Constant progression of difficulty promotes motor learning
because an individual’s abilities are considered within the
conditions of a specific learning experience. According to the
Challenge Point Framework [85], learning occurs through active
problem solving. Errors committed during motor learning are
necessary to both improve movement behavior and provoke
neuroplasticity [86]. The majority of custom virtual reality
systems for rehabilitation successfully implemented this concept.
Unfortunately, all 9 studies using commercial video game
platforms and devices did not report on the progression of
difficulty, which does not enable assessment of whether the
participants in these studies were appropriately challenged. This
is somewhat surprising, since game developers generally
integrate difficulty progression to maintain players’ enjoyment.
Commercial video game platforms and devices can have limited
therapeutic value for individuals with physical disabilities
because they are designed for nondisabled populations [87].
Depending on the severity of the sensorimotor impairments,
individuals with CP may not achieve the minimum threshold
to progress through the difficulty levels in a given game. The
concept of progression of difficulty is nonnegligible, as it may
have a negative impact if a task is deemed too difficult. Thus,
the strong association between challenge and motivation
highlights the importance of delivering interventions at an
appropriate difficulty level.

Motivation
Motivation is a critical element of rehabilitation, especially in
the pediatric population [88,89]. A lack of motivation both
increases activity limitations and decreases the child’s

participation, thus hindering adherence to treatment [88]. Higher
levels of motivation help lead an individual toward satisfying
their specific needs and achieving goals in a persistent manner
[90]. Given that most commercial games have high production
value and include gamification elements to promote motivation
and volition [91], most of the studies using commercial video
game platforms and devices reported a high level of motivation.
However, it is also possible that while commercial video games
may be perceived as motivating and fun, they might still be too
difficult for participants with CP. Driving elements of motivation
include appropriately challenging tasks, game variability, setting
realistic goals, and aspects of competition such as a reward
system [92]. Unfortunately, these elements were often not
incorporated into custom virtual reality systems for
rehabilitation. Reasons contributing to these findings could
include a lack of financial resources available in the
development of a game and/or the lack of collaboration between
game developers, clinicians, and end users. Future studies must
comprehensively assess and report motivation levels and
whether or not they were sustained in the long term. Moreover,
strategies used to drive motivation should also be reported to
completely understand the utility of such strategies.

Retention and Transfer of Skills
Two of the most important principles of motor learning pertain
to how much the improvements are retained over an extended
period and how much of the newly acquired skill can be
transferred to performance of a similar task [93,94]. The
majority of the studies reviewed, regardless of the type of virtual
reality used, did not examine these principles in depth. A few
studies, however, referenced the potential to retain the newly
acquired upper limb skills [46,55,61,66], as well as the
possibility to transfer motor skills to real-life activities
[51,57,66,73]. Virtual reality is well suited to address important
factors that potentially encourage retention and transfer of skills,
such as high enjoyment level, physical fidelity of the practiced
movement, and high repetitions. Thus, retention is an important
factor that must be addressed in future studies.

Type of Practice
Relatively few details were provided regarding the practice
conditions used for studies with the commercial video game
platforms and devices. For the custom virtual reality systems,
4 studies reported using massed practice. The beneficial impact
of massed or distributed practice on learning is not clear and is
likely related to contextual factors such as the nature (discreet
vs continuous) and the difficulty of the task or the expertise of
the participants. A pilot study conducted in healthy participants
that compared massed practice with distributed practice in a
virtual reality setting did not report any significant difference
between these 2 types of practice [95]. Thirteen studies reported
using variable practice, while only 1 study reported using
random practice. Both variable and random practice tend to
negatively affect short-term performance but often have a
positive long-term impact on skill retention and transfer [96].
Variable and random practice are notably more cognitively
engaging [97], more challenging, and improve generalization
and adaptability, as observed when performing a novel variation
of a task [85]. Our results show that many interventions do not
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take full advantage of increasing variability within trials to
optimize skill retention and transfer. The concept of variability
was first introduced by Bernstein [98], who emphasized that
the success of practice relies on the process of solving a problem
repetitively. To this day, this concept remains relevant and
should be considered when developing virtual reality
interventions. Nonetheless, it should be noted that in some
contexts, blocked and constant practice might be more suitable,
notably in younger children or in difficult tasks [99-101].
Therefore, virtual reality software should be flexible enough to
allow the clinician to adjust the variability within a block of
trials in order to maximize motor learning.

Limitations
Overall, our interpretation of the results of these studies was
limited by the available information provided in the publications.
For example, inconsistent reporting of the type of feedback and
delivery schedule hindered our ability to conclude whether
feedback was provided in the form of knowledge of performance
or knowledge of results [102]. In other words, our review was
constrained by the level of detail in the studies’ methodology
sections, which often mirrored the quality of the studies. Thus,
no conclusion was drawn on the effectiveness of virtual reality
in rehabilitation, as it was beyond the scope of this review.

Conclusions
This review demonstrates the current integration of select
principles of motor learning into commercial video game
platforms and devices and custom virtual reality systems
designed for upper limb motor recovery. Overall, motor learning
principles are not yet being fully integrated into virtual reality
systems, especially into commercial video game platforms and
devices, because the target audience is not individuals with
disabilities. Custom virtual reality systems are better tailored
to the needs of individuals with CP and provide an experience
better adapted to the capacity of individuals in term of difficulty.
However, the custom virtual reality systems used in this review
were not as engaging as commercial video game platforms and
devices nor did they provide multimodal feedback. Nonetheless,
designing an intervention using multimodal feedback may be
feasible with the proper resources. The integration of motor
learning principles into such a system would help maximize its
efficiency and offer a cost-effective intervention to supplement
standard treatments in the clinical setting. Future research should
provide detailed methodology on the extent to which motor
learning principles are integrated to help evaluate the efficacy
of video game platforms and devices and virtual reality systems
in improving upper limb function.
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