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Abstract

Background: In affective exergames, game difficulty is dynamically adjusted to match the user’s physical and psychological
state. Such an adjustment is commonly made based on a combination of performance measures (eg, in-game scores) and
physiological measurements, which provide insight into the player’s psychological state. However, although many prototypes of
affective games have been presented and many studies have shown that physiological measurements allow more accurate
classification of the player’s psychological state than performance measures, few studies have examined whether dynamic difficulty
adjustment (DDA) based on physiological measurements (which requires additional sensors) results in a better user experience
than performance-based DDA or manual difficulty adjustment.

Objective: This study aims to compare five DDA methods in an affective exergame: manual (player-controlled), random,
performance-based, personality-performance–based, and physiology-personality-performance–based (all-data).

Methods: A total of 50 participants (N=50) were divided into five groups, corresponding to the five DDA methods. They played
an exergame version of Pong for 18 minutes, starting at a medium difficulty; every 2 minutes, two game difficulty parameters
(ball speed and paddle size) were adjusted using the participant’s assigned DDA method. The DDA rules for the performance-based,
personality-performance–based, and all-data groups were developed based on data from a previous open-loop study. Seven
physiological responses were recorded throughout the sessions, and participants self-reported their preferred changes to difficulty
every 2 minutes. After playing the game, participants reported their in-game experience using two questionnaires: the Intrinsic
Motivation Inventory and the Flow Experience Measure.

Results: Although the all-data method resulted in the most accurate changes to ball speed and paddle size (defined as the
percentage match between DDA choice and participants’ preference), no significant differences between DDA methods were
found on the Intrinsic Motivation Inventory and Flow Experience Measure. When the data from all four automated DDA methods
were pooled together, the accuracy of changes in ball speed was significantly correlated with players’ enjoyment (r=0.38) and
pressure (r=0.43).

Conclusions: Although our study is limited by the use of a between-subjects design and may not generalize to other exergame
designs, the results do not currently support the inclusion of physiological measurements in affective exergames, as they did not
result in an improved user experience. As the accuracy of difficulty changes is correlated with user experience, the results support
the development of more effective DDA methods. However, they show that the inclusion of physiological measurements does
not guarantee a better user experience even if it yields promising results in offline cross-validation.

(JMIR Serious Games 2021;9(2):e25771) doi: 10.2196/25771
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Introduction

Affective Exergames
Exercise games (commonly shortened to exergames) are used
to promote enjoyable, intensive exercise in applications such
as weight loss and maintenance [1,2], healthy aging [3], and
motor rehabilitation [4,5]. In such exergames, tailoring the game
difficulty to the player’s abilities and preferences can often
improve the user experience, enabling more enjoyable, frequent,
and intensive exercise. Such difficulty adjustment can always
be performed manually by a player via an interface. However,
although manual adjustment is generally accurate, it can cause
interruptions in game flow, as users must stop playing the game
to adjust difficulty [6]. This has led to the development of
dynamic difficulty adjustment (DDA) methods, where the game
assesses the player’s current state and automatically adjusts the
difficulty to bring the player into a more desirable state.

The simplest and most popular DDA methods are based only
on performance measures (eg, in-game score), which provide
an easily measurable and interpretable indicator of perceived
game difficulty. However, although many studies have shown
the positive effects of performance-based DDA on user
experience [7], performance alone does not necessarily provide
insight into the player’s psychological state, for example, a
frustrated player can get a high score in a game without enjoying
it. This has led to the development of affective games, an
emerging type of videogame that adapts difficulty based on a
combination of the player's performance and their psychological
(cognitive and affective) state. This psychological state can be
defined as, for example, the level of anxiety [8,9] or via the
two-dimensional valence-arousal model [9,10] and is commonly
inferred from measurements such as an electrocardiogram
(ECG), galvanic skin response, and electroencephalography
(EEG) using automated classification algorithms. Once the
psychological state has been classified, DDA can be performed
using rules such as “if performance is high and anxiety is low,
increase difficulty.” Thus, incorporating psychological
information allows affective games to potentially achieve more
effective and personalized DDA than performance-based
methods [11].

Affective exergames are most prominent in motor rehabilitation,
where physiological measurements have been used to estimate
psychological states and adjust the difficulty of exercises for
both the upper [5,12-16] and lower limbs [17,18]; they have
also been used for general exercise enhancement in several
studies [19,20]. However, as affective exergames are more
complex than simple performance-based DDA, the question
arises: does the additional cost and complexity result in a better
user experience?

Do Affective Exergames Improve User Experience?
As mentioned, in affective exergames, psychological states are
extracted from measurements such as ECG, EEG, and galvanic

skin response using signal processing and machine learning
techniques. The ground truth for such machine learning is
generally the user’s self-reported state or opinion, for example,
how anxious they are or how they would like difficulty to be
adjusted [8,11,21]. The accuracy of DDA is then estimated as
the percentage of times that the affective exergame makes the
same DDA decision (based on the extracted psychological state)
as the user would. This accuracy is never perfect; however, to
justify the use of affective games, affective DDA should reach
a higher accuracy than performance-based DDA and result in
a better user experience than performance-based DDA.

Many studies in both affective exergaming and other fields of
affective computing have shown that the addition of
physiological measurements allows for a more accurate
classification of the player’s psychological state compared with
using only performance measurements [12,17,22-24].
Furthermore, some studies have shown that affective exergames
that perform DDA based on physiological measurements achieve
a positive user experience [5,13-15]. However, there is little
evidence that the user experience achieved with affective
exergames is better than that achieved with a performance-based
exergame in the same context. To the best of our knowledge,
only one study has examined this difference and has found that
an affective exergame was more engaging than an equivalent
performance-based exergame [14]. Even outside affective
exergaming, the evidence in favor of affective DDA is limited,
with a few studies in entertainment games showing better user
experience with affective DDA than performance-based DDA
[8] and a few studies showing a better user experience with
affective DDA than manual (user-guided) DDA [25,26],
although the user’s decisions are frequently used as the ground
truth for training affective DDA.

This lack of evidence showing that affective technologies result
in a better user experience than simpler technologies has been
acknowledged as a significant issue in affective computing
[27,28], as calculating the accuracy of psychological state
classification or demonstrating a positive user experience with
affective DDA may not be enough to show the superiority of
affective technologies. For example, our own Wizard of Oz
studies in affective games have shown that, although user
psychological state classification accuracy is correlated with
user experience, the relationship between the two is complex
and nonlinear [29,30]. Furthermore, studies from other fields
of human-machine interaction indicate that offline classification
accuracy does not always strongly correlate with user experience
or even with real-time (dynamic) classification accuracy [31,32].
Thus, lessons learned from offline classification studies cannot
be directly transferred to physiology-based DDA. The state of
the art in affective exergaming can be summarized as follows:
there is evidence that affective exergames result in a positive
user experience and that physiology-based psychological state
classification is more accurate than performance-based
psychological state classification. However, there is very limited
evidence that physiology-based DDA (used in affective
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exergames) results in a better user experience than
performance-based DDA (used in simpler exergames).
Additional evidence in this regard is needed to justify the
broader adoption of affective exergames.

Goal of the Study
This study aims to evaluate the user experience in an exergame
where DDA is performed using one of five methods: manual,
r a n d o m ,  p e r f o r m a n c e - b a s e d  ( P E ) ,
personality-performance–based (PEPE), and
physiology-personality-performance–based (all-data). The last
three DDA methods were based on classifiers developed for
offline psychological state classification in our previous study
[33]. In this study, these classifiers were connected to if-then
difficulty adjustment rules and used as a basis for DDA. The
research questions were as follows:

• Research question 1: do the PEPE and all-data methods
result in a better user experience than the PE method? The
all-data method can be considered an affective exergame,
and the all-data with PE comparison thus represents a direct
comparison of affective and performance-based exergames.
In our previous study, including personality and
physiological measurements increased psychological state
classification accuracy compared with using only
performance measures [33], but this is not guaranteed to
result in a better user experience. The inclusion of
personality characteristics was considered separately
because tailoring DDA to personality may improve user
experience without additional sensors [34];

• Research question 2: do manual and random DDA result
in the best and worst user experience, respectively? The
user’s preference is commonly used as theground truth for
training DDA algorithms in affective games [8,11,21], so
manual DDA should result in a very positive user
experience. At the same time, some studies have shown
better user experience with physiology-based DDA than
with manual DDA [25,26]. Random DDA should result in
a poor experience but is included as a baseline;

• Research question 3: is user experience positively correlated
with the accuracy of psychological state classification
during gameplay? Our previous Wizard of Oz [29,30]
studies and others’ studies [28] indicated a correlation
between the two, but the nature of this relationship in actual
games remains unclear.

Methods

Overview
This paper describes a comparative evaluation of five DDA
methods in an affective exergame. Three of these methods were
developed based on data recorded in a previous study [33]; thus,
we briefly refer to a previous study for better understanding.
Both studies were approved by the University of Wyoming
Institutional Review Board (protocol no 20190822DN02495).

This section is divided into five subsections. The first subsection
presents the exergame used for DDA evaluation, which is
identical for both studies. The second subsection describes the
different measurement types used as a basis for DDA, which
were nearly identical for both studies. The third subsection
summarizes the previous study used to train the DDA methods
for this study (described in detail in our previous paper [33]).
The fourth subsection presents the study protocol. Finally, the
fifth subsection presents the outcome variables and data analysis
performed to compare the five DDA methods in this study.

Exergame
An exergame version of Pong was reused from our previous
research, originally intended for two-player rehabilitation
exergaming [35,36], and a single-player version was created
for our previous open-loop study [33]. It consists of 2 paddles
and a ball on a board. The participant controlled the bottom
paddle, while the top paddle was controlled by a computer
opponent. If the ball passed either player’s paddle, the other
player would score a point, and the ball would start moving
again from the middle of the screen. The player moved their
paddle left and right by tilting the Bimeo (Kinestica) arm
tracking device left and right with their dominant hand. The
game was played on a 21-inch screen, with the participant seated
approximately 60 cm from the screen. A photograph of this
study setup is shown in Figure 1.

The game difficulty can be adjusted using two parameters: ball
speed and paddle size. Although the game allows the
participant’s and opponent’s paddle sizes to be changed
independently, the evaluated DDA methods always changed
the 2 paddles simultaneously and identically so that the
participant’s paddle was never larger or smaller than that of the
computer opponent. The DDA methods used in this study were
based on multiple measurements, with the decision-making
rules trained based on data recorded in a previous study, as
described in the following sections.
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Figure 1. A participant playing the exergame (on the screen) using the Bimeo device (right hand) while wearing the different physiological sensors on
the head and nondominant hand. The eye tracker is visible below the screen.

Measurements Used as the Basis for DDA
A total of 3 data types were recorded and used as a basis for
DDA: physiological responses, performance, and personality
characteristics. Physiological responses and performance were
recorded continuously during gameplay and thus varied as the
difficulty of the game changed. Personality characteristics were
collected using questionnaires at the start of the session (after
the researcher demonstrated the game but before participants
played it) and did not change during gameplay but were
expected to influence the participant’s DDA preferences.

The physiological recording process was identical in this study
and our previous open-loop study [33] so that the previous data
could be directly used to create the DDA methods; parts of the
text in this section and Multimedia Appendix 1 are thus
rephrased from the previous paper.

Physiological Signals
This study used 2 g.USBamp signal amplifiers and associated
sensors (g.tec Medical Engineering GmbH) to measure six
physiological signals: 8-channel EEG, 2-channel
electrooculogram, ECG, respiration, galvanic skin response,
and skin temperature. A seventh physiological signal, point of
gaze, was recorded using a GP3 eye tracker (Gazepoint). The
sensors used are shown in Figure 1. Detailed information about
the measurements is available in Multimedia Appendix 1 but,
in brief, they were performed as follows:

• EEG was recorded from 8 locations based on the 10-20
placement system [37]: AF3, AF4, F1, F2, F5, F6, C1, and
C2. Feature extraction methods included the lateral power
spectrum density [38] and dispersion entropy [39].

• Electrooculogram was recorded from 2 channels reflecting
up-down and left-right eye movements. The extracted
features were based on its first derivative. In addition, it
was used to denoise the EEG signals.

• ECG was recorded using 4 electrodes on the trunk.
Extracted features included heart rate and time- and
frequency-domain estimates of heart rate variability [40].

• Respiration was recorded using a thermistor-based sensor
in front of the nose and mouth. Extracted features included
respiration rate and time-domain estimates of respiratory
rate variability.

• The skin temperature was recorded using a sensor attached
to the little finger of the nondominant hand. Extracted
features included the mean temperature and changes in skin
temperature across time.

• Galvanic skin response was recorded by attaching a sensor
to the index and middle fingers of the nondominant hand.
Features were extracted from both the tonic (low frequency)
component and the phasic skin conductance responses [41].

• From the eye tracker data, the extracted features included
the size of each pupil and the mean gaze velocity.

Physiological features were normalized by dividing each
calculated feature value by the feature value obtained during
the baseline period.
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Performance
The in-game score was used as the only feature to assess
participants’ performance. It was defined as the difference
between the participant’s score and the computer opponent’s
score.

Personality Characteristics
Participants completed four personality questionnaires: the
Learning and Performance Goal Orientation measure [42], the
Behavioral Inhibition and Activation Scales [43], the
Self-Efficacy Scale [44], and the 10-Item Personality Inventory
[45]. Questionnaire details are provided in Multimedia Appendix
1.

Summary of the Previous Study
In our previous study [33], 30 healthy university students (mean
24.2, SD 4.4 years; 11 women) participated in a 1-hour session.
Physiological signals were first recorded for a 2-minute baseline
period, during which participants were instructed to relax,
remain motionless, and look at the computer screen. Then, nine
game difficulty configurations consisting of combinations of
three possible ball speeds (slow, medium, and fast) and three
possible paddle sizes (small, medium, and large) were played
in random order for 2 minutes each. After each 2-minute
interval, a short questionnaire was filled out to assess the
perceived difficulty, enjoyment, and two subjective preferences
about game difficulty (desired change to ball speed and paddle
size). Participants had seven options for perceived difficulty
and enjoyment (1 for very low and 7 for very high) and five
options for how they would like to change each difficulty
parameter, ranging from a decrease by two levels (−2) to an
increase by two levels (+2). The order of game difficulty settings
was preset randomly for each participant, and the participant’s
desired changes to the ball speed and paddle size did not actually
affect the game.

The study protocol resulted in a data set with two outputs
(desired changes to ball speed and paddle size) and 64 input
features calculated during 2-minute gameplay periods: the
physiological, personality, and performance features described
in Multimedia Appendix 1. Multiple classifiers were developed
to categorize the two subjective difficulty adjustment preferences
into three classes: increase (+1 and +2), no change (0), and
decrease (−1 and −2). Separate classifiers were developed and
evaluated for ball speed and paddle size, and separate classifiers
were trained for different combinations of the three recorded
data types (Multimedia Appendix 1). These classifiers were

separated so that a classifier did not have access to the results
of another classifier (eg, the ball speed classifier did not have
access to the results of paddle size classification and vice versa);
however, they were still trained on data from the same
participants and gameplay periods, and all had access to current
ball speed and current paddle size (as the current game state
would be realistically available to any classifier). In all cases,
stepwise forward feature selection [46] with an inclusion
threshold of P=.05 was first used to select a subset of features.
This reduced subset was then used to train four classifier types,
of which multiple linear regression resulted in the highest
classification accuracy and was thus chosen for this study.

Study Protocol for Comparison of DDA Methods
This study compared five DDA methods using the same study
setup and a protocol similar to the open-loop study. A total of
50 healthy university students (mean 25.1, SD 5.9 years; 13
women; 5 left-handed) participated in the study, with 10
assigned to each DDA method. The 5 participant groups went
through the same study protocol, which differed only according
to the DDA method they were assigned to. Participants were
not told which method they were assigned to and had no way
of identifying it.

After signing the consent form, filling out the four personality
questionnaires, putting on the physiological sensors, and
recording the responses for a 2-minute baseline period (same
as in the Summary of the Previous Study section), participants
started to play the game with a medium difficulty level (speed
level 3 in a range of 1-6 and paddle size 2 in a range of 1-4).
Every 2 minutes, the game was paused, and participants filled
out a short questionnaire to report their perceived difficulty,
enjoyment, and the way they would like to change the game
parameters (same as in the Summary of the Previous Study
section). Participants were allowed to ask for longer breaks in
case of dizziness or arm fatigue; however, this only happened
after a 2-minute interval among all 50 participants, and dizziness
and fatigue were not otherwise tracked. Once the participant
was ready to continue, the difficulty level was adjusted by
changing the ball speed and paddle size using the DDA method
to which the participant was assigned. In all DDA methods, the
ball speed and paddle size were adjusted independently of each
other. All participants played the game for a total of 18 minutes
(nine 2-minute intervals, with difficulty adjustment after each
interval) and then completed two outcome questionnaires (see
the Outcome Variables and Data Analysis section) to complete
the study protocol. The protocol is summarized in Figure 2.

Figure 2. Summary of the study protocol. All participants first completed the personality questionnaires, rested for a 2-minute baseline period, then
went through nine 2-minute gameplay intervals (game 1-9), with a short questionnaire after each. Physiological measurements were recorded throughout
the baseline and gameplay and separated into 2-minute intervals for analysis. At the end, participants filled out the final outcome questionnaires. FQ:
final questionnaire; PQ: personality questionnaire; SQ: short questionnaire.
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As mentioned earlier, the participant groups differed according
to the DDA method; in total, five methods were used:

1. Manual adjustment: the ball speed and paddle size were
adjusted based on the participant’s preferences expressed
in the short questionnaire. For each parameter, they had
three options: increase by 1 level, no change, and decrease
by 1 level.

2. Random adjustment: for both ball speed and paddle size,
one of the three options available to the manual method
(increase, no change, or decrease by one level) was chosen
entirely randomly.

3. PE method: the ball speed and paddle size were adjusted
based on three features: the current ball speed, current
paddle size, and the in-game score achieved by participants.
To perform the adjustment, two multiple linear regression
models were trained based on data from a previous study
using the three features as the inputs and the adjustment to
the ball speed and paddle size as outputs (the exact
regression coefficients are presented in Table A1 in
Multimedia Appendix 1). The output of each regression
model was converted to discrete classes and used to perform
difficulty adjustment: increase by 1 level (output of model
above 0.5), no change (output between −0.5 and 0.5), and
decrease by 1 level (output below −0.5).

4. PEPE method: the ball speed and paddle size were adjusted
based on multiple features selected among current game
difficulty, in-game scores, and personality characteristics.
The adjustment was performed using two regression-based
classifiers, as with the PE method, but trained using both
performance and personality data. A mix of personality
characteristics from all four questionnaires was included
in the classifiers, with only self-efficacy and agreeableness
included in both classifiers (exact regression coefficients
are presented in Tables A2 and A3 in Multimedia Appendix
1).

5. All-data method: the ball speed and paddle size were
adjusted based on multiple features selected among current
game difficulty, in-game score, personality characteristics
(eg, extroversion), and physiological responses (eg,
respiration rate). Adjustments were made using two
regression-based classifiers developed based on data from
a previous study. For both ball speed and paddle size
classifiers, the first two selected features were from skin
temperature and respiration, and multiple EEG features and
multiple personality characteristics were selected (exact
regression coefficients are presented in Tables A4 and A5
in Multimedia Appendix 1).

Among the five DDA methods, only the manual method took
the participants’ preferences regarding game difficulty into
account. Furthermore, limits were put in to ensure that the ball
speed and paddle size did not exceed the preset limits.
Specifically, if a DDA method’s decision would have caused a
parameter to exceed a minimum or maximum value (1-6 for
ball speed; 1-4 for paddle size), it instead stayed at that extreme
value.

Outcome Variables and Data Analysis
The primary outcome of the study was the effect of different
DDA methods on user experience. In addition, two secondary
analyses were performed. First, the closed-loop classification
accuracy was calculated for the 50 participants and correlated
with the user experience. Second, the classifiers were retrained
on the data from the 50 participants using the same methods as
in the previous study.

Effect of DDA Methods on User Experience
The effect of the different DDA methods on user experience
was assessed using two self-report questionnaires at the end of
the 18-minute gameplay period: the Intrinsic Motivation
Inventory (IMI) [47] and the Flow Experience Measure (FEM)
[48]. The IMI is an 8-item questionnaire that assesses
effort/importance, perceived competence, interest/enjoyment,
and pressure/tension with two items per assessed variable. The
same version was used in our previous exergaming research
[35,36]. The FEM assesses a single, variable flow, using 8 items.
This resulted in 5 outcome variables in total, which were
compared between the methods using two-tailed two-sample t
tests. Intrinsic motivation and flow are perhaps the two most
commonly evaluated short-term outcomes of serious games and
exercise [6,19,23,25,44,47] and were thus considered appropriate
for this study.

Accuracy of Speed and Paddle Size Changes
In this study, three DDA methods (PE, PEPE, and all-data) used
regression-based classifiers developed based on data from a
previous study [33]. Their accuracy was defined as the
percentage of agreement between the classifier’s opinion and
the participant’s preference for changes in ball speed or paddle
size (measured via the short questionnaire after each 2-minute
gameplay interval). This accuracy was expected to correlate
with user experience when the classifier was used as a basis for
difficulty adjustment. In a previous study, the all-data method
resulted in the most accurate classification, whereas PE resulted
in the least accurate classification; however, the accuracies in
this study may be different for multiple reasons. For example,
the range of ball speeds in this study was wider than in the
previous study, and new situations, even within the same
scenario, may induce ungeneralizable physiological responses,
significantly reducing classification accuracy [27]. Simply
having new participants may also reduce classification accuracy,
although this was expected to have a smaller influence as
participants in this and previous studies were drawn from the
same broad pool. Thus, the classification accuracy was
recalculated for each DDA method using data from this study.

To determine whether the accuracy of changes in ball speed
and paddle size was correlated with user experience, Spearman
correlation coefficients were calculated between each
participant’s accuracy of ball speed and paddle size adjustments
and the IMI and FEM outcomes. This was done across 40
participants; the manual group was dropped because they all
had an accuracy of 100%.

Classifier Retraining and Validation
As mentioned in the previous subsection, we expected that the
accuracy of the three classifiers used for the three DDA methods
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(PE, PEPE, and all-data) would not be the same in this study
as it was in the previous study [33]. Although the data collection
in this study was performed with prebuilt classifiers, these
classifiers could be retrained offline after the data collection
conclusion to determine whether the all-data method is still the
most accurate if validated on the new data.

To perform this training and revalidation, three combinations
(PE, PEPE, and all-data) of the three data types (physiology,
performance, and personality characteristics) from 80
participants (30 from a previous study and 50 from this study)
were used as inputs to train classifiers that categorize perceived
difficulty, enjoyment, desired change to ball speed, and desired

change to paddle size (obtained from the short questionnaire)
into three classes: low/decrease, medium/no change, and
high/increase. Reference output values for all classifiers were
obtained from the short questionnaire, and Table 1 presents the
selected reference ranges of the short questionnaire answers for
each class and variable. These ranges were chosen to provide
the most even possible spread of samples among the three
classes for each variable (although an even spread was not
always feasible because of biases in the data). The current ball
speed and paddle size were added to all input data combinations
because they indicate the current game state and are available
to any practical model.

Table 1. Defined ranges for retraining the three-class classifiers.

Paddle size changeSpeed changeEnjoymentDifficultyClass

Low

−2 to −1−2 to −11 to 41 to 2Range

15162246180Sample, n

Medium

0053 to 5Range

368303184364Sample, n

High

1 to 21 to 26 to 76 to 7Range

355355290176Sample, n

To reduce the number of features before classification, stepwise
forward feature selection [46] with an inclusion threshold of
0.05 was used to find the most informative set of features. Then,
to classify the input data, four different classifiers were used: a
support vector machine with a linear kernel, linear discriminant
analysis, ensemble decision tree, and multiple linear regression.
The classifiers were validated using 10-fold cross-validation
(72 participants’ data used to train and 8 participants’ data to
validate the classifier; the procedure was repeated 10 times with
each participant in the validation data set once).

Results

Effects of DDA Methods on User Experience
All extracted features and questionnaire results are available in
Multimedia Appendix 2. Figure 3 shows the five outcomes of
the IMI and FEM for all five DDA methods, presented as a
violin plot of the 10 participants assigned to each method. The
outcomes of the IMI and FEM were compared between different
DDA methods using two-tailed two-sample t tests; however,
only one difference was significant: pressure/tension was higher
in the all-data method than in the random method (P=.04).
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Figure 3. Violin plot of postexperiment self-report questionnaire outcomes. all data: based on physiology, personality, and performance. Each participant
is indicated as a dot. The first four questionnaire outcomes have a possible range of 2-14, whereas flow has a possible range of 8-40. PE: adjustment
based on performance; PEPE: adjustment based on personality and performance.

Classifier Accuracy and Retraining
Table 2 shows the accuracy of each DDA method in the dynamic
prediction of the participants’ desired changes to the game
difficulty parameters. Accuracy was calculated by comparing
the classifier’s prediction and the participants’ preference
expressed on the short questionnaire after all 2-minute intervals.
The manual method trivially achieves 100% accuracy because
it uses the participants’ answers as a basis for difficulty
adjustment. Among the other four methods, the all-data method

was the most accurate for predicting the desired adjustments to
ball speed and paddle size.

Figure 4 depicts the ball speed and paddle size for nine 2-minute
intervals of each DDA method.

Table 3 presents the accuracies of three-class classification of
the four answers to the short questionnaire when retraining and
validating the classifiers using three combinations of input data
types obtained from 80 participants. Combining all data types
(all-data) resulted in the most accurate classifiers.
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Table 2. Prediction accuracy of changes to the game difficulty parameters.

Difficulty adjustment method (%)Difficulty parameter

All-datacPEPEbPEaRandomManual

62.543.753.732.5100Ball speed

55.033.546.241.2100Paddle size

aBased on performance.
bBased on personality and performance.
cBased on physiology, personality, and performance.

Figure 4. Ball speed (left) and paddle size (right) of five dynamic difficulty adjustment methods for nine 2-minute game intervals across 10 participants.
Error bars indicate 95% CI. PE: based on performance; PEPE: based on personality and performance; all data: based on physiology, personality, and
performance.
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Table 3. Mean three-class classification accuracies for different combinations of input data modalities.

Outcome variable (%)Input data

Paddle size changeSpeed changeEnjoymentDifficulty

55.8 (E)64.6 (Ed)50.2 (Lc)62.4 (Sb)PEa

59.9 (Rf)62.9 (S)50.7 (S)62.5 (S)PEPEe

61.7 (R)62.6 (E)50.7 (S)64.2 (S)All-data

aBased on performance.
bS: support vector machine.
cL: linear discriminant analysis.
dE: ensemble decision tree.
eBased on personality and performance.
fR: multiple linear regression.

Correlation Between Classifier Accuracy and User
Experience
Finally, Table 4 presents the Spearman correlation coefficients
of the outcomes of the IMI and FEM questionnaires and the

accuracy of ball speed and paddle size adjustments across all
DDA methods except manual (where it was always 100%).

Table 4. Spearman correlation coefficients between user experience indicators and accuracy of difficulty adjustments.

Difficulty parameterUser experience aspect

Paddle sizeBall speed

P valueCoefficientP valueCoefficient

.37−0.14.090.27Effort/importance

.51−0.10.010.38Enjoyment/interest

.84−0.03.310.16Competence

.81−0.04.0050.43Pressure/tension

.77−0.05.060.30Flow

Discussion

Practical Implications
No differences were observed between the DDA methods. The
exception was higher pressure/tension with the all-data method
than with the random method, which was expected as the all-data
method resulted in greater difficulty (Figure 4); similar higher
pressure/tension as a result of adaptation versus no adaptation
has been observed in our previous work [35]. Although we shall
discuss the limitations of this study later, we first discuss the
practical implications of the results.

As there was no clear benefit to the all-data method, our results
do not support the use of physiological measurements for
affective exergaming in practical environments. Physiological
sensors are expensive, time-consuming, and inconvenient; thus,
they should not be used unless they show a clear benefit. This
result disagrees with the study of Xu et al [14], which found
positive effects of physiology-based DDA, but it is difficult to
compare the 2 studies because of significant methodological
differences; for example, the Xu study had only three difficulty
levels in total. At first, the result also appears to disagree with
a previous study by Liu et al [8], which found positive effects
of physiology-based DDA in an entertainment game. However,
Liu et al [8] also did not find significant differences between

physiology-based DDA and performance-based DDA based on
outcome measures obtained at the end of the session; they were
only able to show a difference because outcome measures were
also obtained at multiple time points during gameplay itself,
and those midgame outcomes were significant.

The prediction accuracy of changes to game difficulty
parameters was higher with the all-data method than all other
automated methods (Table 2), so the inclusion of physiological
measurements did increase accuracy. For example, the
accuracies for ball speed and paddle size were 62.5% and 55.0%
with the all-data method compared with 53.7% and 46.2% with
the PE method, respectively. The difference in accuracy may
have been too low to improve the user experience meaningfully.
Our previous Wizard of Oz study, for example, found that users
did not reliably perceive a difference between psychological
state classification accuracies that differed by less than 10%
[30]. Thus, other games where adding physiological
measurements increased DDA accuracy by less than 10%
(including our own previous work [12] and the work of Chanel
et al [9]) also may not find an improvement in user experience
as a result.

As seen in Table 4, the accuracy of DDA correlated with user
enjoyment/interest (r=0.38; P=.01) when the four nonmanual
DDA groups were pooled together. This result agrees with our
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previous research [29,30] and with studies from other authors
[28]. Thus, our study supports the value of more effective,
personalized DDA methods; it simply does not support the
premise that physiology-based DDA will be more effective than
performance-based DDA.

Finally, a follow-up analysis was conducted to identify any
clear patterns in when and how the DDA methods made
mistakes. A clear pattern was observed: all DDA methods were
more accurate at extreme difficulties (eg, very high/low paddle
sizes) than at moderate difficulties. This is, in our opinion,
unsurprising: when the difficulty is set to an extreme level, the
correct choice is very likely to be moving away from the
extreme. However, when difficulty is moderate, the correct
choice is more dependent on the individual player.

Differences in Classifier Performance
Three DDA methods used classifiers that were trained on data
from a previous open-loop study [33]. Studies from other fields
of human-machine interaction have shown that classifiers that
perform well in an offline, open-loop setting may not perform
equally well in an online, real-time setting where they are used
to influence machine behavior [31,32]. Thus, although our
primary research focus was on user experience, we were also
interested in whether the previously trained classifiers would
exhibit lower accuracy in this study. Indeed, the accuracies in
this study (Table 3) were lower than those in the previous one.
For example, in the previous study, the all-data method resulted
in a classification accuracy of 84.1% for both ball speed and
paddle size preferences [33]; in this study, the accuracies were
62.5% for ball speed and 55% for paddle size. As a validation
step, we reran the classification offline (post hoc) to ensure there
was no bug with real-time processing; this resulted in the same
results as during the data collection sessions.

We believe that the primary reason for the decrease in
classification accuracy is the difference in the experienced
situations. In a previous study [33], participants were exposed
to three different ball speeds and three paddle sizes. In this
study, participants were exposed to six different ball speeds and
four paddle sizes. This is partially a weakness of our study
design; however, in realistic applications, psychological state
classification algorithms would inevitably be exposed to
situations not seen in the training data. As a follow-up analysis,
we retrained and evaluated the same types of classifiers using
data from all 50 participants in this study and the 30 participants
from the previous one (80 participants in total). As shown in
Table 3, this also resulted in lower accuracies than those in the
previous study [33], and we again believe that the primary
reason for the difference was the broader range of experienced
situations.

Nonetheless, as another practical implication, this result suggests
that psychological state classification accuracies obtained during
offline classifier training on previously recorded data may not
transfer to a real-time DDA context. Thus, although a higher
DDA accuracy correlates with user experience (Table 4), any
exergame studies that only show differences in offline
classification accuracy (including our own previous work [33])
should be taken with a grain of salt because these offline results

are not guaranteed to have practical benefits when applied to
DDA.

Could Other Study Designs Be More Sensitive?
As our study did not show differences in user experience among
the DDA methods, we must ask whether other study designs
would be more sensitive to these differences. Indeed, an intuitive
follow-up study would be to test the same DDA methods in a
within-subjects design, with each participant experiencing
multiple DDA methods. Xu et al [14] and Liu et al [8] found
differences in user experience between physiology-based and
performance-based DDA, both of which used a within-subjects
design, similar to our previous Wizard of Oz study [30]. In this
study, we opted for a between-subjects design so that
participants could experience their assigned DDA method for
a longer amount of time; using multiple DDA methods would
have resulted in much longer sessions. However, we
acknowledge that this is not necessarily optimal.

Instead of a within-subjects design, it would also be possible
to increase the sample size. The 10 participants assigned to each
DDA method in this study constitute a relatively small sample
size that may have been insufficient to find differences even if
they did exist. We originally envisioned a larger sample size;
however, data collection was carried out in early 2020 and then
interrupted by the COVID-19 pandemic, forcing us to limit
ourselves to the collected 50 participants.

Finally, in addition to a within-subjects design and/or a larger
sample size, additional qualitative data could have been
collected. For example, players could have been asked
open-ended questions about their experiences. This data
collection was done in the study by Liu et al [8], where
participants reported lower anxiety with physiology-based DDA
in open-ended questions but did not report lower anxiety on
postgame forced-choice questionnaires. Although no systematic
qualitative data collection was performed in this study, we
mention an experimenter observation: although participants did
not know which DDA method they had been assigned to, some
appeared to have initial biases (eg, whether useful information
can be extracted from physiology), and some attempted to
determine whether their physiology influenced the system by,
for example, breathing rapidly. This is in line with previous
publications about participant bias and bidirectional relationships
in affective computing [27,28] and may warrant further
investigation.

Limitations of the Used Exergame
Finally, the results of our study do not necessarily generalize
to all affective exergames. We believe that the choice of
three-class classification followed by increasing or decreasing
or not changing difficulty is not controversial, as it represents
a classic approach to affective gaming [21]. However, our study
adjusted two difficulty parameters (ball speed and paddle size)
simultaneously, and the results may not be generalizable to
games where only a single difficulty parameter is changed, such
as in the work of Liu et al [8]. Furthermore, our study changed
difficulty in relatively small steps, and our results may not
generalize to games where a single DDA decision may

JMIR Serious Games 2021 | vol. 9 | iss. 2 | e25771 | p. 11https://games.jmir.org/2021/2/e25771
(page number not for citation purposes)

Darzi et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


immediately change the difficulty to a very high or very low
level, such as in the work of Xu et al [14].

In addition, our study is based on the classic affective gaming
approach of classifying difficulty based on prerecorded data
and then adapting it at a constant frequency without user input
[21]. Thus, it may not generalize to designs where DDA is
adapted with a variable frequency, although such designs are
not yet common in affective computing; it also may not
generalize to designs where users can provide feedback about
DDA decisions, potentially increasing future accuracy. For
example, reinforcement learning, which remains largely
unexplored in affective exergames, could be used for this
purpose—users could give rewards for correct DDA decisions,
gradually leading to a more positive user experience.
Furthermore, the results may not generalize to designs that omit
classification entirely and use other schemes, such as fuzzy
control [5] or random forest–based regression [16].

Finally, different results might be obtained in the same scenario
using different data analysis methods. For example, improved
physiological feature extraction and classification may increase
the accuracy of physiology-based DDA, resulting in an improved
user experience in the same setting; conversely, improved
performance feature extraction may also increase the accuracy
of performance-based DDA. If we were to reuse the data for
further research, we would likely first investigate alternatives
to stepwise feature selection, which has potential issues and
may not select the optimal subset of features [49]. As a
follow-up analysis, we retrained and evaluated the same
classifiers with two different feature reduction methods
(principal component analysis and the lasso method,

recommended by an article critiquing stepwise methods [49])
but did not find an improvement in classification accuracy as a
result of these methods.

Conclusions
Five aspects of user experience were compared among five
DDA methods of a Pong exergame: manual, random, PE, PEPE,
and all-data. The last three methods adjusted the ball speed and
paddle size in the game using regression-based classifiers
developed in a previous (open-loop) study with 30 participants.

Though the all-data method exhibited the highest user state
classification accuracy (approximately 10% higher than the PE
method), no significant differences in user experience were
observed among DDA methods. Thus, our results do not support
the addition of physiological measurements to affective
exergames; as such measurements are expensive and
time-consuming, they should only be added if they meaningfully
improve user experience. The study found that user experience
was correlated with user state classification accuracy, thus
supporting the development of more effective DDA methods,
which simply does not support the notion that additional
measurements will automatically improve the user experience.

The study results are limited by a somewhat suboptimal study
design: each participant experienced only one DDA method,
and a within-subjects design in which participants experience
multiple methods may find positive effects of more complex
DDA methods on user experience. Nonetheless, few studies
have examined the relative effects of physiology-based DDA
on user experience, and our study thus adds to the limited body
of evidence on the effects of physiological measurements in
affective games on user experience.
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