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Abstract

Serious games show a lot of potential for use in movement rehabilitation (eg, after a stroke, injury to the spinal cord, or limb
loss). However, the nature of this research leads to diversity both in the background of the researchers and in the approaches of
their investigation. Our close examination and categorization of virtual training software for upper limb prosthetic rehabilitation
found that researchers typically followed one of two broad approaches: (1) focusing on the game design aspects to increase
engagement and muscle training and (2) concentrating on an accurate representation of prosthetic training tasks, to induce
task-specific skill transfer. Previous studies indicate muscle training alone does not lead to improved prosthetic control without
a transfer-enabling task structure. However, the literature shows a recent surge in the number of game-based prosthetic training
tools, which focus on engagement without heeding the importance of skill transfer. This influx appears to have been strongly
influenced by the availability of both software and hardware, specifically the launch of a commercially available acquisition
device and freely available high-profile game development engines. In this Viewpoint, we share our perspective on the current
trends and progress of serious games for prosthetic training.

(JMIR Serious Games 2021;9(4):e28079) doi: 10.2196/28079
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Background

Adherence of patients to interventions (eg, home exercises)
remains a key challenge in rehabilitation medicine [1]. Patients
complain that exercises often feel tedious and tiring and that
progress, if any, is slow and incremental [1]. Delivering virtual
training in the form of games can help overcome issues related
to nonadherence (or noncompliance) of patients to their exercise
regimen [1]. The use of serious games has been recommended
to motivate patients in performing their prescribed exercises
consistently and completely [2-4].

The stroke rehabilitation literature includes a large number of
publications that use serious games. Koutisiana et al [5]
identified 96 publications between the years 1999 and 2019.
The serious games used in stroke rehabilitation are showing
significant benefits for the users, most notably an increased
number of repetitions performed, which is a prime goal for this
kind of rehabilitation [6]. Supported by this academic evidence,
rehabilitation programs like Rehability (Imaginary srl), which
has grown out of the Rehab@Home project [7], are being
incorporated in clinical practice.

Although serious games have found their way into a multitude
of areas of everyday life, industry, and research, including
prosthetic training [8], academic results supporting the efficacy
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of serious games in myoelectric prosthetic training are scarce,
if not nonexistent. Using games in virtual rehabilitation has
been a part of research for 30 years [9], but they have only
gained proper traction in the field in the last decade. This rise
coincided with the commercialization of a range of game-related
technologies (eg, motion tracking cameras and game controllers
with inertial measurement sensors [6]). In this paper, we will
offer our perspective on the efficacy of virtual training in general
and serious games specifically for myoelectric prosthetics
training.

Current research claims that the use of serious games in
myoelectric prosthetics training has promise to improve training.
Examples include faster learning [10], reduction of fatigue and
irritation while training [11], and increased muscle control [12].
In addition, serious games can offer a faster route to myoelectric
training after limb loss [11], as a game would likely not rely on
socket fitting or full wound closure. Furthermore, it can make
the training more enjoyable and engaging [11], as well as
affordable and accessible for the home environment [10]. It also
has the potential to assist the user with their body image [11],
decrease phantom limb pain [11], and let the user feel more in
charge of their own rehabilitation [8,10], while at the same time
make it feel less like rehabilitation [8].

The prevailing view is that this combination of positive effects
has the potential to significantly add to the existing prosthetic
training and lead to a reduction in prosthesis abandonment,
which has been linked to a lack of motivation and engagement
[13] and poor training [10]. The performance of virtual
prosthetic training at home can also offer benefits to the
therapists. As a supplement to existing training regimes, it can

offer an objective measure of how diligently the patient is doing
their exercises at home and of their improvements [10]. It also
has the potential to decrease rehabilitation times and the time
necessary for each patient, thereby reducing the workload for
therapists [8].

We investigated papers that included any virtual training or
assessment for upper limb prosthesis control using myoelectric
signals as input. The included papers were identified during
investigation of the literature and has been augmented with
systematic searches in multiple databases, including PubMed,
Web of Science, and Google Scholar. This led to the inclusion
of 55 journal articles and conference papers, with a total of 59
different virtual training programs. CAG classified these
programs into two categories, namely serious games and
simulators (Table 1), according to Narayanasamy et al [14].
Both training simulators and serious games are interactive
simulations in a virtual environment with the purpose of skill
development. Simulators often duplicate real-world scenarios,
require standard operational procedures, are not designed for
entertainment, have no secondary purpose, and usually do not
have an obvious final state. Conversely, a serious game is set
in a fictitious scenario, provides various challenges, allows for
entertainment, and allows the user to develop gameplay patterns
while trying to achieve game-specific goals. This can include
an end state. Therefore, some of the programs are classified as
“simulators,” even when the authors identified them as “games.”
The programs were further classified by the type of task the
user was given, the type of control scheme the program used,
and the input and output devices that were used. This more
detailed table can be found in Multimedia Appendix 1.
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Table 1. Categorization of the virtual training programs.

PublicationsNames

Serious games

[15]Air-Guitar Hero (rhythm game)

[16]WiiEMG (sports game)

[17]Sonic Racing (racing game)

[18,19]MyoBox (dexterity game)

[20]Flappy Bird (sidescroller)a

[20]Space Invaders (fixed shooter)a

[21]MyoBeatz (rhythm game)b

[22-25]Falling of Momo (vertical scroller)b

[10]Volcanic Crush (reaction game)a,b

[10]Dino Sprint (endless runner)a,b

[10]Dino Feast (dexterity game)a,b

[11]Space ARMada (fixed shooter)

[2,12,26,27]SuperTuxKart (racing game)

[2,12,26,27]Step Mania 5 (rhythm game)

[2,12,26,27]Pospos (dexterity game)

[28,29]Who nose?/Nose Picker (simple game)a

[28,29]Smash Bro/Bash and Debris (sidescroller)a

[28,29]Sushi Slap (action game)a

[28,29]Crazy Meteor (multidirectional shooter)a

[28,29]Dog Jump/Beeline Border Collie (sidescroller)

[30]Breakout-EMG (arcade game)

[31]Training Game Prototypea

[10]Dino Claw (dexterity game)a,b

[32]Training, TACc test, and Crossbow Gamea

[4]UpBeat (rhythm game)a,b

[13]Rhythm Gamea,b

[33]Crate Whacker (tech demo)b

[33]Race the Sun (endless runner)b

[33]Fruit Ninja (dexterity game)b

[33]Kaiju Carnage (action game)b

Simulators

[34,35]UVa Neuromuscular Training System

[36]Commercial software PAULA

[36]Virtual training

[37]Virtual training environment

[38]Mixed reality trainingb

[39]Virtual box and beans testb
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PublicationsNames

[40]Virtual box and blocks testa,b

[41]Virtual rehabilitation training toola,b

[42]VITA: Virtual Therapy Arma,b

[43]Explorationa,b

[44]AR prosthesis simulator

[45-47]Virtual training system

[48]Training system

[49]Catching simulator

[50]Performance assessment

[19]Catching simulator Prosthesis Gripper

[51,52]MSMS (Musculoskeletal Modelling Software)

[53]Prosthesis simulator

[54]VRd testing environment

[55]Virtual simulation

[56]VR evaluation environment

[57]Virtual reality environment System

[58,59]ARe training systema

[60]Myoelectric training tool

[61]Training environment

[62]Virtual prosthesis

[63]Virtual model

[64]Training platform

[65]Manus VR Training Platform

[66]Dual-arm EMGf signal control training system

[67]Myoelectric Control Evaluation and Trainer System

aDeveloped using the Unity engine.
bUses the Myo Gesture Control Armband.
cTAC: Target Achievement Control.
dVR: Virtual Reality.
eAR: Augmented Reality.
fEMG: electromyography.

Different Approaches

The categorization of the publications in this field and the
software presented therein has shown a significant split of the
approaches of researchers into roughly two groups, as can be
seen in Figure 1. This divide is most noticeable with regard to
whether the software is classified as a game or a simulator and
which type of tasks are implemented. The first approach focuses
on the engagement and motivation of the user and seems to
have grown in popularity in recent years. Researchers develop
serious games that often have an explicit or implicit focus on
game design elements to keep the user engaged in the game and

therefore in the rehabilitation or training. The majority of these
myogames (21/30) incorporate abstract tasks not resembling a
real-life scenario. These games attempt to train the user in the
use of a myoelectric prosthesis by focusing on different aspects
of muscle control, including proportional control, independent
control, and others. Only two games feature a task that is
somewhat activities of daily living–related, both consisting of
variants of a pick-and-place task, one stationary [10] and one
moving in a 3D environment [31]. In a further seven games,
the user is tasked with reproducing specific postures in two
rhythm games [4,13], a virtual reality crossbow game [32], and
four open-source games [33].
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Figure 1. Heatmap of the authors’ software classification against the performed tasks: serious games using abstract tasks [2,10-12,15-30], tasks related
to ADL [10,31], and posture reproduction tasks [4,13,32,33]; as well as simulators using abstract tasks [34-36], ADL-related tasks [19,37-54], and
posture reproduction tasks [56-67]. ADL: activities of daily living.

Publications introducing and assessing these games show that
they are engaging and enjoyable to the participants. Some
studies involving people with limb difference showed their
willingness to use them in a home environment [8,21,27]. With
regard to skill acquisition, a general increase in in-game
performance is shown for a number of these games [12,25,26].
However, it was rarely tested whether these myogames increase
prosthetic ability or speed up the learning process of acquiring
that skill. The one research group that tested for an increase in
prosthetic ability did not find evidence of a significant increase
following the playing of a myogame for different control
schemes [19,30].

The second approach focuses on skill transfer and therefore
involves the development and investigation of simulators that
mostly show the user a representation of the real world and
require the performance of activities of daily living–related or
posture reproduction tasks. Only two training programs that
were classified as simulators used abstract tasks; these tasks
were embedded in a sterile software environment and lacked
distinctive game traits. In this type of research, the focus is on
the effectiveness of the skill transfer from the virtual training
to actual prosthetic ability. The prescribed tasks can involve
recreations or tasks inspired by tests used in the assessment of
prosthetic ability, like the Southampton Hand Assessment
Procedure (SHAP) test [68], the Target Achievement Control
(TAC) test [69], and others. The focus on task specificity for
learning prosthetic skills seems like a promising approach as
the results of one study indicated that skill transfer occurred.
Performing a virtual task resembling the control of a prosthetic
hand led to an increase in prosthetic ability [49] as opposed to
when the task was to play a classic arcade game [30]. The task

specificity therefore seems to have an influence on the
effectiveness of virtual training; however, further research must
be done to substantiate this.

The effectiveness of virtual training in increasing prosthetic
ability is without doubt one of the necessary requirements for
any adoption into clinical rehabilitation; however, consensus
on a universal measure of effectiveness is not available. A
criticism of the myogames in the game-focused group is that
they work on the implied assumption that an improvement in
skill performing any myoelectric task will lead to an
improvement in prosthetic skill [49]. Although it has been shown
that the user increases their skill in different aspects on the
muscular level [10,25], it is not clear whether that influences
the way or speed at which a person might acquire prosthetic
skill.

Other Influences

Figure 2 shows another interesting development regarding the
first research approach. It clearly features a joint spike in more
recent years in the development of serious games incorporating
an abstract task and presented in a nonimmersive environment
using traditional media. The development of simulators and
software using other task types and environment experiences
has remained comparatively steady over the same time frame.
The start of this spike in publications coincides with the release
of the Myo Gesture Control Armband (Thalmic Labs), a dry
surface electrode armband, on the commercial market in the
year 2015 [70]. The spike in publications started to decrease
when the company stopped selling this product in 2018.
However, even though it is no longer sold, the Myo armband
is still in widespread use in research as there is currently no
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commercial alternative available. In total, 30% of the programs
analyzed use the Myo armband and the most recent work using
it was published in 2021 [61]. The uptake in development has
likely been further boosted due to a few professional commercial
game development engines being free for personal and
low-profit use alongside the provision of an application

programming interface (API) for the Myo Armband; there are
numerous open-source examples of the use of this API in these
engines. The main example of one of these engines is the Unity
game engine (Unity Technologies) made freely available in the
year 2009 [71]; this game engine has been used in at least
one-third of the published programs.

Figure 2. Number of training software introduced by task, software, and environment type. ADL: activities of daily living; AR: augmented reality;
VR: virtual reality.

These two factors indicate that the development of serious games
intended for prosthetic training was strongly influenced by the
emergence of readily available software and hardware
technology. However, the enthusiastic embrace of the newly
available technology tended toward research exploring the
engagement aspects of game design. This is likely due to the
low barrier to entry of this approach as there are a multitude of
resources for game development available and the study of
engagement does not require the involvement of people with
limb difference. Investigation of these serious games confirmed
that people are more willing to engage in learning a task if it is
an intrinsically enjoyable and motivating experience [2]. Such
research has also shown that with these games, participants are
able to quickly master fine control of their muscles [10,25].
However, this research often tacitly assumed an efficacy in skill
transfer by this virtual muscle training, which has yet to be
substantiated. As such, it is not clear whether this increase in
motor control would lead to enhanced prosthesis control and
which types of games might be more conducive to learning how
to use a prosthetic device. Therefore, at this point in time,
serious games are not serious enough to train upper limb
prosthesis use effectively.

Where Do We Go From Here?

In the research targeting other conditions, such as stroke
rehabilitation, the main target is to get the user to move their
respective body part more to regain a substantial degree of
control over it. The reason for the strong focus on the

engagement and motivation of users to increase repetitions of
a movement is therefore clear. However, using a myoelectric
upper limb prosthesis requires the user to acquire a completely
new set of skills. This can mean to either retrain or newly train
muscles and their associated uses, depending on whether the
limb difference is acquired or congenital. Therefore, a necessary
requirement for a serious game in this field to be considered for
clinical adoption would be evidence of a benefit to prosthetic
ability (ie, evidence that the skill learned in the game transfers
to the use of an actual myoelectric prosthesis). So far this kind
of skill transfer has only been shown for software that we
classified as simulators. It is hypothesized that the task
specificity of the actions performed virtually allows the transfer
to the real world to occur [49].

Research in this field needs to establish viable paths for transfer
to occur before focusing on the topic of engaging and motivating
the target user group. Serious games intended for prosthetic
training need to show their benefit for prosthetic ability, be it
direct or indirect. Hence, a sensible approach for the
development of such a serious game could be to first
demonstrate which types of tasks allow transfer at all and then
to develop the engaging and motivating game structure around
it. As with other conditions, researchers employ the
attractiveness of games to actively engage users; however, the
clinical benefit cannot be neglected or compromised. The two
different approaches in this field encourage separate habit loops
when they should merge and form a single loop more beneficial
for the user, as shown in Figure 3. Engagement should not be
viewed separately but in conjunction with transfer-enabling
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training to enhance the habit formation of the user to adhere to
the training.

Therefore, the research should establish one or multiple tasks
that either directly enable skill transfer to prosthetic use or show
evidence of supporting the acquisition of prosthetic skill. Built
on these tasks, an engaging and motivating platform should be

implemented, which should enable users to increase their
prosthetic skill while having fun. The positive reinforcement
of the skill increase combined with the fun experienced while
training should have a positive effect on adherence to the
training and therefore on the long-term success of the
intervention.

Figure 3. Diagram of the existent and recommended habit loops.

Furthermore, the effect of the introduction of myogames on
therapists’ workloads should be determined; this is highly
dependent on the nature of the training and whether there is a
need for the direct involvement of the therapist, which could
potentially result in a similar or even larger workload [72]. As
this factor depends strongly on the design of the program, it
emphasizes the importance of smart development including the
input and feedback of all parties involved, including clinicians
and therapists, to lead to a product that benefits everyone.

In conclusion, research on prosthetic training has confirmed
that myoelectric skills can be acquired with serious games.
However, for the development of a viable serious game intended
for prosthetic training, it is necessary to validate the “serious”
part of the game, namely the tasks that would allow for skill
transfer. Serious games for prosthetic training can only be
expected to yield fruitful results beyond engagement when they
incorporate tasks that are found to facilitate prosthetic skill. We
recommend that the research community investigates which
types of myogame tasks might facilitate transfer, as the only
existing results at the time of writing this paper indicate a lack

of effectiveness [19,30,73]. This lack does not necessarily hold
true for all tasks that are not related to activities of daily living,
however, and ignoring abstract tasks entirely would exclude a
wide range of possible avenues for prosthetic game
development.

It would be beneficial to be more accurate regarding the
terminology used in the field and, if the term “game” is used,
to specify the incorporated game design elements explicitly.
More long-term and ideally home-based experiments are needed
to conclusively test for any prosthetic skill transfer that might
occur with the consistent use of prosthetic gaming devices. Even
though previous studies indicate that no change in prosthetic
ability occurs after training with a myogame [19,30,73], these
only tested the effect of comparatively short training sessions
with able-bodied people or very small groups of prosthesis users.
It should also be tested whether prosthetic gaming has the
potential to support traditional prosthetic training by allowing
for supplementary practice sessions between visits to the
prosthetist.
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Abbreviations
EMG: electromyography
SHAP: Southampton Hand Assessment Procedure
TAC: Target Achievement Control
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