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Abstract

Background: Sustained engagement is essential for the success of telerehabilitation programs. However, patients’ lack of
motivation and adherence could undermine these goals. To overcome this challenge, physical exercises have often been gamified.
Building on the advantages of serious games, we propose a citizen science–based approach in which patients perform scientific
tasks by using interactive interfaces and help advance scientific causes of their choice. This approach capitalizes on human intellect
and benevolence while promoting learning. To further enhance engagement, we propose performing citizen science activities in
immersive media, such as virtual reality (VR).

Objective: This study aims to present a novel methodology to facilitate the remote identification and classification of human
movements for the automatic assessment of motor performance in telerehabilitation. The data-driven approach is presented in
the context of a citizen science software dedicated to bimanual training in VR. Specifically, users interact with the interface and
make contributions to an environmental citizen science project while moving both arms in concert.

Methods: In all, 9 healthy individuals interacted with the citizen science software by using a commercial VR gaming device.
The software included a calibration phase to evaluate the users’ range of motion along the 3 anatomical planes of motion and to
adapt the sensitivity of the software’s response to their movements. During calibration, the time series of the users’ movements
were recorded by the sensors embedded in the device. We performed principal component analysis to identify salient features of
movements and then applied a bagged trees ensemble classifier to classify the movements.

Results: The classification achieved high performance, reaching 99.9% accuracy. Among the movements, elbow flexion was
the most accurately classified movement (99.2%), and horizontal shoulder abduction to the right side of the body was the most
misclassified movement (98.8%).

Conclusions: Coordinated bimanual movements in VR can be classified with high accuracy. Our findings lay the foundation
for the development of motion analysis algorithms in VR-mediated telerehabilitation.

(JMIR Serious Games 2022;10(1):e27597) doi: 10.2196/27597
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Introduction

Stroke Telerehabilitation
Stroke is continuously cited as a leading cause of disability in
adults. Every year, 795,000 Americans experience stroke, and
649,000 survive it [1]. Approximately 610,000 of these cases
are the first attacks, indicating that the population of stroke
survivors is rapidly increasing [1]. Stroke survivors commonly
experience neuromuscular disorders that profoundly disrupt
their lives. It is estimated that 74% of stroke survivors require
assistance with activities of daily living, costing billions of
dollars annually [1,2]. Beyond loss of mobility, stroke-induced
disability takes a societal toll; many stroke survivors can no
longer contribute to the workforce and lose their functional role
in their community [2]. They often enter a downward spiral that
is associated with a steep decline in their psychological and
cognitive well-being, affecting their families and social circles
[1,3,4].

Motivated by these economic and societal needs, rehabilitation
medicine aims to reintegrate individuals with disabilities into
society. This process typically involves multiple visits to
outpatient clinics, where therapists treat patients with arduous
exercises. The more frequently and intensely they exercise, the
sooner the patients would recover muscle strength and function
[5]. Nonetheless, outpatient clinics are often underequipped and
understaffed. As a result, patients have to wait for long periods
for appointments and do not receive sufficient care, significantly
hindering their recovery [6]. To address this issue, the notion
of telerehabilitation has emerged.

In the ideal telerehabilitation paradigm, patients are prescribed
home-based exercises involving electronic devices that measure
their movements [7-9]. Data on motion are then sent to a
physician, who would, in turn, remotely assess motor
performance and recommend the next steps in the rehabilitation
regimen. Through this process, patients are expected to exercise
at their own convenience at home, readily receive professional
feedback, and ultimately maximize their rehabilitation outcomes.
Multiple telerehabilitation systems have been introduced in the
past 20 years, demonstrating and yielding outcomes comparable
with those of traditional in-clinic rehabilitation [9-12].

Despite the promising prospects, the advantages of
telerehabilitation are often not realized, as patients fail to adhere
to their prescribed regimen in the absence of a physical therapist
[13,14]. One of the primary factors pinpointing a lack of
adherence is a lack of motivation [13,14]. To address this critical
limitation, innumerable efforts were invested in gamification
of telerehabilitation [15-17]. Notably, the Java Therapy, one of
the first examples of a telerehabilitation system, incorporated
therapy games in between status tests that measure rehabilitation
progress [18]. Similarly, games that involve chasing rabbits
[19], catching falling fruit [20], and even competitive air hockey
[21], were developed to make physical exercise more enjoyable.

Citizen Science–Based Telerehabilitation
Although games effectively improve engagement in
telerehabilitation, incorporating citizen science into the activity
was proposed instead [22]. In citizen science, members of the
general public carry out research tasks in projects led by
professional scientists [23,24]. These tasks involve data
collection or data analysis and do not require any particular
expertise or commitment [23,24]. Citizen science is a compelling
means for improving engagement in telerehabilitation for a few
reasons. Similar to games, the motivations underlying
participation in citizen science are primarily intrinsic [25,26].
Some citizen science projects incorporate gaming elements,
such as point systems, scoreboards, or competitions, to promote
long-term participation [27,28]. Unlike in games, citizen
scientists choose to contribute to a project not only because it
is enjoyable or fun but also because they are interested in the
research topic, they have a desire to learn more about it, and
they would like to promote it [29-31]. In essence, citizen science
is intellectually stimulating and encourages learning. Moreover,
citizen science has the potential to empower patients to help
scientists despite their disability, increase their self-esteem, and
provide them with a sense of belonging to a community [24,32].
Finally, as it is important for leading scientists to collect or
analyze data meticulously, there is rarely a time constraint for
making a contribution such that users can contribute at their
own pace.

In a recent study, we presented a low-cost telerehabilitation
system that delivers exercise in the context of citizen science
[33]. The system consisted of a Microsoft Kinect sensor and an
inertial measurement unit mounted on a wooden dowel. Users
would manipulate the dowel in front of the Kinect sensor to
perform actions on a standard computer monitor or television
screen. More specifically, the actions involved the annotation
of 360° images of a highly polluted canal in Brooklyn, New
York, United States. The system was dedicated to bimanual
exercise, in which users would manipulate the dowel with both
hands. The system also featured a classification algorithm that
identified the movements performed by the user, which achieved
a high accuracy of 93.1%.

In this study, we adapted the Kinect-based interface to virtual
reality (VR) and focused on the classification of upper limb
movements in a preclinical setting. We recorded the interactions
of 9 healthy users with the Oculus Rift (Oculus VR), a popular
VR gaming system. The Oculus Rift consists of a head-mounted
display, 2 Touch controllers, and 2 tracking sensors. Inertial
measurement units are embedded in the head-mounted display
and Touch controllers such that the system is able to record the
orientation of the head and the hands. The devices were also
seeded with an array of infrared lights, which, in conjunction
with the tracking sensors, enable high-fidelity motion tracking
through the Oculus trademarked Constellation Tracking [34].
The VR setting offered more degrees of freedom in motion
relative to our Kinect-based system, whereby users could rotate
their entire bodies to interact with the interface. Therefore, to
adapt the software and classification algorithm, we applied a
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kinematic framework that infers the position and orientation of
the Touch controllers relative to the head-mounted display.

Our choice to explore human movement in VR was motivated
by 2 main reasons. First, the major barriers that prevent the
widespread adoption of rehabilitation technologies are cost and
user friendliness. Rehabilitation devices are often custom-made,
cost prohibitive, and require technological proficiency that
extends beyond the typical knowledge of the general public
[35]. On the other hand, gaming controllers such as the Oculus
Rift are safe and intuitive to use and are more affordable than
rehabilitation robots, thereby offering a viable means for
home-based telerehabilitation. Gaming controllers can also
objectively measure the motor performance through their
embedded sensors. Specifically, the Oculus Rift tracks
movements of the headset and Touch controllers with high
spatial and temporal resolution, thereby providing rich data on
the user’s motions. It was validated in controlled experiments
and deemed sufficient for motion analysis in medical
applications [36,37].

Second, VR is the most immersive medium available today.
The technological apparatus of VR grants the user the experience
of presence, where the user accesses a novel environment and
interacts with it as if the computer ceased to exist [38,39]. In
the context of rehabilitation, immersive VR environments are
largely used to improve patients’ engagement and adherence to
the rehabilitation regimen, which will accelerate their recovery
in return [6,16,40]. The literature suggests that patients
undergoing rehabilitation augmented with VR could
substantially improve their motivation and motor functions
[40,41]. For example, Dockx et al [42] compared 281 older
adults’ perceptions of fall prevention training over a period of
6 weeks when delivered with and without VR. All participants
who exercised in the VR condition reported higher engagement
and perceived benefits and were more likely to recommend the
intervention to others than those who did not use VR in their

training. In another study, AlMousa et al [43] tested a game
with 5 patients with stroke and compared their satisfaction when
playing in VR and in a traditional setting. All patients agreed
that the VR modality was highly motivating and expressed
interest in including it in their rehabilitation. Finally, in a study
involving 4 patients with spinal cord injury, Palaniappan and
Duerstock [44] showed that VR improved motor performance,
whereby patients’ upper limb range of motion was greater.

We created an interactive interface in which users could
participate in an environmental citizen science project. In this
particular application, users contributed to the environmental
monitoring of the highly polluted Gowanus Canal in Brooklyn,
New York, United States. Users could explore 360° images of
the canal, select labels from a list of 4 labels, and allocate them
onto objects of interest, such as potential pollutants and notable
landmarks (Figure 1).

The interface was dedicated to bimanual training of patients
with stroke, whereby users interacted with the interface by
performing coordinated movements with both arms. Many
rehabilitation strategies, such as constraint-induced movement
therapy [45,46], task-oriented training [47], and continuous
passive movement [48], have various advantages. Bimanual
training is highlighted as a potent clinical approach for the
recovery of coordinated movements with both physiological
and practical advantages [49] Research has shown that passive
movement of paretic limbs can recover voluntary motion by
imparting electrical impulses to the contralateral primary motor
cortex (sometimes referred to as spillover) [50-52] and project
them to the affected muscles [53-55]. Furthermore, it has been
argued that bimanual skills are abundant in activities of daily
living and therefore practicing them will help patients regain
independence more quickly [56-59].

We pursued a simple, yet effective, data-driven approach to
automatically assess bimanual movements in VR.

Figure 1. Screenshot of the user interface. A 360° image of a polluted canal can be explored in the virtual environment. In the green panel on the right,
there is a list of 4 labels (Reflection, Truck, Foam, and Person) and a trash bin. The Next Image button above the labels allows the user to analyze a new
image. Below the list, a Quit button is situated. By pressing it, the user will exit the application. The user has selected the label Truck (highlighted in
red) and intends to allocate it onto the image. The label Shore has been disposed of and appears below the trash bin.
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Motor Assessment Using Machine Learning
Machine learning offers an important avenue for automatically
identifying and categorizing human behavior. In machine
learning, a computer uses data to predict an outcome without
explicitly knowing the relationship between the data and the
outcome [60,61]. The input of a machine learning algorithm
consists of features that describe instances of data. When a
supervised machine learning approach is used, knowledge of
the outcome must be available during training. In this case, a
set of instances is fed to the machine, encapsulating their
features and associated outcomes [61,62]. For example, Begg
and Kamuzzaman [63] used machine learning to distinguish
between the gait of the young and older adults. The authors fed
their machine learning algorithm with data on the gait of 12
young and 12 older individuals, where their gait was
summarized through multiple features, such as stride length,
walking speed, forces applied by the feet, and ankle angles.
They used a supervised machine learning approach (support
vector machine [SVM]) and therefore provided the machine
with the true class of the participant: young or older. Following
training, the SVM classifier achieved an accuracy rate of 91.7%
in the classification of the age group of the participant.

In a similar study, Novak et al [64] aimed to identify gait
initiation and termination using wearable inertial measurement
units. The authors recorded 10 participants walking with inertial
sensors on their legs and trained a tree classifier to distinguish
between gait phases. The algorithm exceeded 80% accuracy
and was robust with respect to the gait speed. Semwal et al [65]
trained a multilayer perceptron to identify disordered gait. The
authors defined features for walking, running, jogging, and
jumping from vision-based and sensor-based data and achieved
accuracy rates ranging from 85% to 92.5%.

Despite its success with gait analysis, the use of machine
learning to assess upper limb movement has not been extensively
studied. Such an assessment is more challenging as the repertoire
of arm movements is wider than that of the lower limbs. In
several studies, statistical pattern recognition algorithms have
been used to quantify the motor performance of the upper limb
from data collected by inertial sensors [66] and vision-based
sensors [67]. Additional work to recognize upper limb
movement was carried out using k-means clustering and
convolutional neural networks [68,69]. Nonetheless, the efficacy
of machine learning in upper limb rehabilitation remains
underexplored.

Objective
We developed a machine learning algorithm that classifies the
movements performed by the user to automate the assessment
of motor performance. The proposed algorithm implements
dimensionality reduction through principal component analysis
(PCA), feature extraction, and ensemble classification. In all,
9 healthy individuals interacted with our interface, whereas data
on their movements were recorded by the sensors embedded in
the Oculus Rift devices. The classification of the movement
was achieved with remarkably high accuracy and could reduce

the time and cost of poststroke rehabilitation assessment by a
therapist. Furthermore, the classification strategy can be
extended to provide haptic feedback to the user to perform
exercises correctly and safely.

Methods

VR Interface
The interface was developed in the Unity real-time game engine
(Unity Technologies) for use with the Oculus Rift VR system.
In the game, participants were presented with a random 360°
image of the Gowanus Canal, overlaid by a heads-up display
(HUD). The HUD served as the participants’ main method of
interacting with the application. It contained a button for
navigation between images of the canal and a trash bin and a
list of descriptive keywords that may or may not describe objects
within the image.

Users were tasked with analyzing the images. Specifically, they
could explore the 360° images, select labels from the list of
keywords, and allocate them to objects of interest (Figure 1).
If the users could not find an object that a label described in the
image, they could eliminate the label by allocating it onto the
trash bin (Figure 1). Once the user felt that the image was
saturated with labels, they could analyze a new image by
selecting the Next Image button.

To interact with the HUD, the users performed bimanual
gestures (Figure 2). Specifically, users began from a baseline
pose where they flexed their elbows and held the Touch
controllers near their shoulders. To move the cursor to the left,
they extended both arms to the left side of their body,
simultaneously performing horizontal abduction of the left
shoulder, horizontal adduction of the right shoulder, shoulder
flexion, elbow extension, and forearm pronation (Figure 2A).
Similarly, to move the cursor to the right, they performed
horizontal shoulder abduction in the opposite direction,
extending both hands to the right side of their bodies (Figure
2D). To move the cursor upward, users raised the Touch
controllers by flexing their shoulders and extending their elbows
(Figure 2B). To move the cursor downward, they extended both
the elbows and lowered the Touch controllers (Figure 2E).
Finally, to select a button, they flexed both shoulders
simultaneously and extended their elbows, pushing the Touch
controllers away from their body (Figure 2C and Figure 2F).
These movements used most joints of the upper limb and were
commonly prescribed to patients [70,71]. If a user wanted to
move the cursor diagonally along the screen, they would instead
move it horizontally and vertically.

To enable the user interface, we used a kinematic framework
using data on the position of the head-mounted display and
Touch controllers, measured by the infrared camera sensors.
We considered 4 reference frames for the inertial, global space,
denoted as {G} and the 3 noninertial reference frames associated
with the head-mounted display, right hand Touch controller,
and left hand Touch controller, denoted as {H}, {R}, and {L},
respectively (Figure 3).
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Figure 2. Implementation of the user interface. The user is able to perform actions on a computer through (A and D) horizontal abduction and adduction
of the shoulders, (B and E) flexion and extension of the shoulders, and (C and F) flexion and extension of the elbows.

Figure 3. Illustration of a typical Oculus Rift workspace from a top view. Two sensors are placed at the edge of the workspace. The global frame, {G},
uses the coordinate system (XG, YG, ZG). The local frames for the head-mounted display and the right and left Touch controllers are drawn in red and
denoted as {H}, {R}, and {L}, respectively.
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Throughout the game, a midway point between the Touch

controllers, PG
h (Figure 4A), was computed in real time as

follows:

where PG
h is a vector in the form of [X Y Z]T that expresses the

position of the midpoint h in the global frame {G} (T being

matrix transposition); , , and are the positions of a point
along the X-, Y-, and Z-axis of global frame {G}, respectively;
and subscripts R and L represent the right and left Touch
controllers, respectively. The cursor on the screen responded

to the fixed values of PG
h. For example, if XG

h was greater than
a certain threshold value, the cursor would move to the left on

the screen. Similarly, if XG
h was smaller than a certain negative

threshold value, the cursor would move to the right. Considering
that patients may take longer to complete their movements, we
did not impose any time constraints on these controls.

To accommodate for impaired movement with a compromised
range of motion, a calibration phase was added to determine
the aforementioned threshold values. During calibration, the
participant performed each of the movements 5 times

consecutively. The software computed an average of the user’s

range of motion during the 5 iterations as follows:

where n=1, 2,..., 5 is the iteration of the movement, PG
h,n is the

time series of the position of the midpoint between the right

and left Touch controllers during iteration n; and PG
H,n is the

time series of the position of the head-mounted display during
iteration n. The application set a threshold point at a distance

of 0.25 along the X-, Y-, and Z-axis of the head-mounted

display (Figure 4B). At any time when PG
h exceeded 0.25 ,

the cursor began moving on the screen along the axes that
satisfied this condition (Figure 4C). Thus, users who had a
limited range of motion had to move their arms at a shorter
distance to induce movement of the cursor on the screen.

Finally, acknowledging that physical therapy can be physically
and mentally taxing, we enabled a Home page menu such that
patients could press a button to pause the software and rest. This
feature is particularly important for telerehabilitation of stroke,
as many patients may feel pain or fatigue, discouraging them
from engaging in the exercise [14].

Figure 4. Illustration of the calibration threshold along the X-axis. (A) Throughout the game, the instantaneous position of the point between the Touch
controllers (marked with a green circle) is computed. (B) Its maximum position relative to the position of the head-mounted display along the X-axis
(marked with a red circle) is computed during the calibration phase. A threshold is set at 25% of that displacement, represented by the blue star. (C)
During the game, every time the average controller point exceeds the threshold, the cursor will begin moving on the screen in the corresponding direction.

Data Collection
This study was carried out in accordance with the relevant
guidelines and regulations set by the New York University’s
Institutional Review Board, the University Committee on
Activities Involving Human Subjects (study number:
FY2019-2828). Informed consent for participation was obtained
from all participants.

In all, 9 members of the university community were recruited
and escorted to a private room. They were introduced to the
project and VR system. Upon signing a consent form, the
participants stood in a 3 meter × 3 meter cleared space and wore
the head-mounted display. They viewed a short presentation
about the Gowanus Canal and the notion of citizen science and
underwent a calibration phase.

The calibration was designed such that the participants began
with a baseline pose with their elbows bent and hands held near
their respective shoulders. The participants first performed
horizontal shoulder abduction toward their right side.
Instructions on the screen explicitly asked the participants to
extend their arms as far as possible to the right and return to the
baseline pose, repeating this movement 5 times. Then, the
participants performed horizontal shoulder abduction toward
their left side and returned to the baseline pose 5 times. In the
same manner, the participants performed shoulder flexion by
raising both hands, elbow extension by lowering both hands,
and simultaneous shoulder flexion and elbow extension by
pushing both hands forward in this order. The participants
repeated each movement 5 times consecutively and returned to
the baseline pose after each excursion.
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After calibration, the participants completed a tutorial teaching
them how to use the HUD. They then analyzed images of the
Gowanus Canal for as long as they wished. The movements of
the participants were recorded throughout the experiment. The
data set consisted of the time series of the positions of the
head-mounted display and Touch controllers in 3D and their
orientations in Tait-Bryan angles. Measurements were logged
at a sampling rate of 89 measurements per second.

Data Analysis

Kinematics in the VR Setting
Data were processed and analyzed in MATLAB (MATLAB
R2020a; The MathWorks, Inc). We aimed to infer the
participants’ movement during their interaction with the VR
system from data on the positions and orientations of the
head-mounted display and Touch controllers. In VR, the
interface is not constrained to a fixed planar screen, and
participants’ interactions extend to 3D whereby the user can
walk and turn their body around. Therefore, to infer the
participants’ movements, the positions of their hands relative
to their heads are more informative than their positions in
absolute space.

We began with a kinematic description of the positions and
orientations of the Touch controllers relative to the
head-mounted display through matrix manipulation [72]. The
reference frame of the head-mounted display was expressed
with respect to the global frame using the rotation matrix:

where a superimposed hat identifies unit vectors for the
reference frames, such that the columns of the matrix are the
unit vectors of {H}, expressed in {G}’s coordinate system.
Similarly, the reference frames of the Touch controllers with

respect to the global frame were expressed as RG
R and RG

L for
the right and left controllers, respectively.

Taking the devices’ rotation matrices, the frame of reference of
the right Touch controller relative to the head-mounted display
was calculated as

and the left Touch controller’s was calculated as

where the inverse is equivalent to the transpose of the matrix
[72]. To fully describe the instantaneous relative positions and
relative orientations of the devices, we applied the homogeneous
transform [72] at each time step, such that

where PG
H is the instantaneous position of the head-mounted

display in the global frame, PG
H is the instantaneous position

of the head-mounted display in the right hand controller frame,

RG
R is the rotation matrix of the right Touch controller frame

relative to the global frame, PG
R is the position of the right

Touch controller in the global frame, and 0 on the bottom left
entry of the matrix represents a row vector of 3 zeros. We
applied the transformation to instantaneous measurements at
each time step and generated a time series containing the
positions and orientations of the Touch controllers relative to
the head-mounted display.

Assessing Motor Performance
For a comparison of patients’ movements with movements of
healthy ones, we quantified the participants’motor performance
using several metrics: (1) range of motion, computed as the
maximum distance of each of the Touch controllers from the
headset, along each of the anatomical planes [22,73]; (2) mean
speed, computed as the average of instantaneous speeds [22,73];
(3) smoothness, computed as the mean speed divided by the
maximal instantaneous speed [22,73]; and (4) path length,
measured as the sum of distances between pairs of consecutive
data points during movement [22,74].

Feature Selection
We pursued a data-driven methodology to classify the
movements performed by the participant based on the Touch
controllers’position and orientation relative to the head-mounted
display. Only data from the calibration phase were used in the
analysis, as the sequence of movements performed by the
participants during this period was known and could be specified
in supervised training. The data that were collected in the
remainder of the session while participants interacted with the
citizen science software could be used in future endeavors to
assess motor performance and engagement over longer periods,
once automatic classification is implemented. We also included
the instantaneous head-mounted display and Touch controllers’
linear and angular velocities in the global frame for analysis.

Specifically, we computed the devices’ linear, denoted as ,

, and , where (∙) is the noninertial reference frame under
examination and angular velocities about their X-, Y-, and Z-axis

in the global reference system, denoted as , , and . We
also computed the Touch controllers’positions and orientations

relative to the head-mounted display, denoted as , , and

, and , , and , respectively. In general, we denoted

as the generic coordinate of point B, in coordinate system
{A}. For notational convenience, when the trailing subscript is
a reference frame, B represents the position of the origin of

frame {B}. For example, XH
R is the position of the right Touch

controller, along the X-axis of the head-mounted display.

Similarly, γG
R is the angular velocity of the right Touch

controller about the X-axis in the global frame. Overall, the data
set included 30 variables, as summarized in Table 1.
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Table 1. Summary of the variables used for principal component analysis. The variables γ, β, and α refer to the Tait-Bryan angles of the Oculus
head-mounted display and Touch controllers about the X-, Y-, and Z-axis, respectively.

Variable descriptionDevice and variable notation

Head-mounted display

Linear velocity in {G}XG
H, YG

H, ZG
H

Angular velocity in{G}γG
H, βG

H, αG
H

Right Touch controller

Position in {H}XH
R, YH

R, ZH
R

Orientation in {H}γH
R, βH

R, αH
R

Linear velocity in {G}XG
R, YG

R, ZG
R

Angular velocity in {G}γG
R, βG

R, αG
R

Left Touch controller

Position in {H}XH
L, YH

L, ZH
L

Orientation in {H}γH
L, β

H
L, αH

L

Linear velocity in {G}XG
L, YG

L, ZG
L

Angular velocity in {G}γG
L, β

G
L, αG

L

Next, we automatically identified instances of movement (versus
nonmovement) in the time series of each variable and segmented
them. Specifically, we used finite differences between the
positional data for the Touch controllers with respect to time
and defined the time series [75]:

Intervals of movement were taken as the instances where Ω
exceeded 0.077 meters/second and lasted for longer than 0.2
seconds (Figure 5). These threshold values were derived
empirically and were unique to the participant. To identify
instances where a distinct pose occurred, pairs of consecutive
intervals and the time series between them were selected as
segments. Overall, 25 segments were identified, one each for
each movement.

PCA was performed to identify salient variables in each
movement. Within segments n=1, 2,..., 25, each of the 30 time
series was normalized with respect to its own SD in the segment.
The normalized time series, sn,i was represented by a column
vector containing variable i=1, 2,..., 30 in segment n. For each

segment n, we generate covariance matrix Kn, whose entries i,
j are given by

where i=1, 2,..., 30, j=1, 2,..., 30, and is the average value
of the components of vector sn. As there are 30 variables, there
are 30×30 possible ordered variable pairs to compute the
covariance for, which is the size of the symmetrical matrix Kn.

The principal components of each covariance matrix Kn were
determined from the dominant eigenvalues λis [76]. To identify
these eigenvalues, we defined a spectral gap as the largest
difference between consecutive eigenvalues sorted in descending
order (Figure 6A). The eigenvalues that preceded the gap were
deemed to be dominant. Then, we examined the contribution
of eigenvector vi’s components, the so-called principal
component loadings, to these principal components. We sorted
the absolute values of these loadings in descending order and
recognized a gap as the largest difference between consecutive
values. The loadings that appeared before the gap were retained,
and the associated variables were used as salient variables that
summarize the entire principal component (Figure 6B).
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Figure 5. Example of movement segmentation. The time series reflects the first 5 movements a participant performed during the calibration phase.
The colored intervals are the ones identified as instances of movement in the segmentation process. Purple intervals correspond to outward movements
where the participant extended their arms, and blue intervals reflect subsequent abduction when the participant returned to baseline pose. Gray regions
are segments where the participant assumed the baseline pose.

Figure 6. Example of the spectrum of a covariance matrix, corresponding to shoulder abduction to the right. The covariance matrix quantified the
covariance of the 30 variables in the first segment, corresponding to shoulder abduction to the right side. (A) The array of 30 eigenvalues (λis) of the
covariance matrix is sorted in descending order. The spectral gap where the largest difference between 2 consecutive eigenvalues appears (marked with
a vertical dashed line) indicates that the eigenvector vi, which is associated with the largest λi, is sufficient for capturing most of the variance in this
first segment. (B) The absolute values of the components of vi are sorted in descending order as well to identify the principal components. Here, the

largest difference appears after 3 components, suggesting that the 3 variables associated with the first 3 components (in this case, γH
L, αH

L, βH
L) are

principal for variation in the segment.

The salient variables we identified in the PCA were used to
create discriminating statistics for training a classification
algorithm. In the training, given the true class of a movement
that was performed, the algorithm would unveil different
relationships between the features that distinguish one movement
from another [61,62].

Importantly, we observed that only the orientations of the Touch
controllers relative to the head-mounted display were prominent
during movement. Thus, their means and SDs were selected as

the features. We also included the mean positions of the Touch
controllers relative to the head-mounted display as features to
further support the distinction between the poses. Nonetheless,
we acknowledged that movements may be better discriminated
using features that encapsulate the interactions between the
variables. Therefore, we used correlation coefficients as
additional features that relate 2 variables at a time. The
correlation coefficients between γ, β, and α of one Touch
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controller and their counterparts in the other Touch controller
were added to the analysis, yielding 21 features in total.

Movement Classification
We implemented a supervised machine learning classification
that identifies which movement a user performs at any given
time. To observe the evolution of features over time in a future
clinical study, we chose to perform classification in a
moving-window paradigm. Within this paradigm, we evaluated
the actual movement and associated features within a window
of several time steps, shifted the window forward in time by a
single step, evaluated the features again, and so on. The length
of the moving window was set to 13 time steps, equivalent to
0.15 seconds.

First, we established the true classes within each frame to train
the algorithm. We visually inspected the time series of the
calibration (where we knew what movement was performed),
identified which movement was performed (if any) at every
time step, and labeled it as such. Beginning from the first time
step, we determined the true class of the window that covered
the subsequent 13 time steps based on their mode. That is, the
window’s true class matched the class of the majority of time
steps (7 or more). Henceforth, the window was moved to the
following time step and the subsequent true class was
determined. In this manner, we created a time series for the true
class of frames. To determine the true class of a movement
within a 13–time step frame, we also computed the set of 21
features and recorded them for the same frame. Thus, we created
21 additional time series, each representing the evolution of a
feature.

Next, we trained a classification algorithm using MATLAB’s
Classification Learner app. We compounded the moving frames’
true classes and features across participants into a single table
and selected it as the data set variable. The frames’ true classes
were set as response variables, and all features were set as
predictors. We applied a K-fold cross-validation with K=5, such
that 80% of the calibration data from all participants were used
for training and the remaining 20%, for validation. Finally, we
selected bagged trees as the model type.

Bagged trees is an ensemble method based on decision trees
[77]. A basic decision tree splits the input data into subgroups
with a similar response to a binary criterion. The subgroups are

partitioned recursively until the model is able to predict the
output based on the class that has the majority representation.
A bagged trees classifier performs bootstrapping and
aggregation, that is bagging, on a multitude of decision trees.
Specifically, the bagged trees algorithm generates decision trees
by resampling the data set with replacement and determines the
response class based on the simple majority of the trees’
predictions. Thus, this classification method mitigates the high
variance often observed in them [78,79].

Because the trees are produced by bagging, all features are
considered for a splitting event. It is possible to score the
importance of each feature by estimating the out-of-bag error.
That is, instances that were not sampled when a tree was
generated were used to make a prediction. The mean error of
the prediction was then computed. The features that yielded the
largest decrease in mean error were considered to be the most
important.

Results

Data Collection
Data were collected from 9 healthy participants who interacted
with the interface. On average, the participants interacted with
the interface for 368.26 (SD 92.74) seconds, generating time
series of 32,776 (SD 8254) time steps on average. A total of
294,983 measurements were collected, of which 142,916 time
steps (1605.80 seconds) were recorded during the calibration
phase.

Motor Performance
The participants’ range of motion, mean speed, peak speed, and
path length were computed (Table 2). The range of motion,
mean speed, and smoothness for each movement in one arm
were comparable with those of its symmetrical counterpart.
However, during shoulder adduction and shoulder flexion or
extension upward, considerable variation was measured among
participants with respect to smoothness; SDs were >25% of the
mean value, or even greater than the mean value, as in the case
of the left hand during shoulder flexion or extension upward.
Finally, in all movements, the path length was larger than the
range of motion, indicating that the participants did not follow
a straight line along the anatomical axes.

JMIR Serious Games 2022 | vol. 10 | iss. 1 | e27597 | p. 10https://games.jmir.org/2022/1/e27597
(page number not for citation purposes)

Barak Ventura et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. A summary of participants’ motor performance for each arm, computed from data from the right and left Touch controllers. The values
represent the mean (SD) across the participants.

Path length (meters), mean
(SD)

Smoothness, mean (SD)Speed (meters/second), mean (SD)Range of motion (meters),
mean (SD)

Movement and hand

Shoulder adduction to the right

0.72 (0.17)2.47 (1.16)0.86 (0.25)0.61 (0.11)Right

0.48 (0.08)1.95 (0.58)0.60 (0.13)0.39 (0.06)Left

Shoulder adduction to the left

0.46 (0.08)2.27 (1.43)0.60 (0.10)0.38 (0.05)Right

0.74 (0.18)4.39 (3.96)0.94 (0.25)0.61 (0.16)Left

Shoulder flexion or extension upward

0.64 (0.10)3.43 (3.33)0.86 (0.20)0.60 (0.08)Right

0.63 (0.10)3.16 (3.64)0.86 (0.20)0.59 (0.08)Left

Shoulder flexion or extension downward

0.82 (0.13)1.94 (0.21)1.02 (0.30)0.66 (0.06)Right

0.81 (0.12)1.95 (0.21)1.03 (0.29)0.66 (0.06)Left

Elbow flexion or extension upward

0.51 (0.08)1.81 (0.29)0.79 (0.19)0.45 (0.05)Right

0.50 (0.07)1.81 (0.33)0.78 (0.18)0.45 (0.05)Left

Dimensionality Reduction
PCA disclosed the salient variables that best characterized each
movement performed by the participants. Examination of the
spectra of the covariance matrices revealed that the spectral gap
was located between the largest and second largest eigenvalues
for all instances of movement. Therefore, only 1 principal
component was required to capture variations in movements.

Unexpectedly, among the 30 variables we considered, only the
orientations of the Touch controllers were pertinent for the
analysis. We found that shoulder abduction to the right side of
the body and to the left side of the body were both associated
with changes in the Tait-Bryan angles about the X- and Z-axis

of the Touch controllers in the head-mounted display frame:

γH
R, αH

R, γH
L, and αH

L. Shoulder flexion while raising the hands

was dominated by variations in all 6 Tait-Bryan angles γH
R,

βH
R, αH

R, γH
L, βH

L, and αH
L. Only changes in αH

L and γH
L

strongly characterized elbow extension while lowering the

Touch controllers. Finally, appreciable variations in αH
R and

αH
L were most prominent during elbow extension while pushing

the Touch controllers forward. Changes in γH
L, βH

L, γH
R, and

βH
R were also detected in this motion. The PCA results are

summarized in Table 3.

Table 3. Summary of the principal component analysis results. The variables γ, β, and α refer to the Tait-Bryan angles of the Touch controllers about
the X-, Y-, and Z- axis, respectively.

Salient variablesMovement

γH
R, αH

R, γH
L, αH

L
Shoulder abduction to the right

γH
R, αH

R, γH
L, αH

L
Shoulder abduction to the left

γH
R, βH

R, αH
R, γH

L, βH
L, αH

L
Shoulder flexion or extension upward

γH
L, αH

L
Shoulder flexion or extension downward

γH
R, βH

R, αH
R, γH

L, βH
L, αH

L
Elbow flexion or extension upward

Feature Selection
We created features based on the variables identified as salient
using PCA. We considered the mean values and SDs of the
Touch controllers’ Tait-Bryan angles. We also included the
Touch controllers’ mean displacement relative to the

head-mounted display to distinguish between static poses. We
used correlation coefficients as additional features to capture
the interactions between the variables. Specifically, we
computed the correlation coefficients for the following three

pairs: (γH
R, γH

L), (βH
R, βH

L), and (αH
R, αH

L). Overall, 21 features
were selected (Table 4).
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Table 4. Summary of the features and variables used in the training of the classification algorithm.

VariablesFeatures

Mean • XH
R, YH

R, ZH
R

• γH
R, βH

R, αH
R

• XH
L, YH

L, ZH
L

• γH
L, βH

L, αH
L

SD • XH
R, YH

R, ZH
R

• γH
R, βH

R, αH
R

Correlation coefficient • (γH
R, γH

L), (βH
R, βH

L), (αH
R, αH

L)

• XG
L, YG

L, ZG
L

Movement Classification
Our classification model achieved an accuracy of 99.9%, where
most misclassifications resulted from falsely classifying
instances of movement as nonmovements (Figure 7). The true
positive rate was highest for elbow extension to the bottom and
for elbow extension forward, with 99.2% of instances classified
successfully in both. The algorithm performed the worst in the
classification of shoulder flexion forward, where the true
positive rate reached 98.7%.

Out-of-bag analysis revealed that the mean value of XH
R was

the most important variable for the classification of movement,

followed by the means of ZH
R and βH

R (Figure 8). The

correlation between αH
R, and αH

L contributed the most to the
classification among the correlation values. Among the SDs,

γH
R contributed the most to the classification. Nonetheless,

correlation coefficients and SDs seemed to modestly impact the

classification. The mean value of γH
L was the least important,

and αH
R had the smallest contribution to classification among

the SD values.

Figure 7. Confusion matrix summarizing the true positive rates of the classification algorithm. Blue entries denote instances of correct classification,
whereas red entries denote instances of incorrect classification. The intensity of the color correlates with the true positive rate. Since the true positive
(negative) rates for misclassification are very low, they appear in light pink.
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Figure 8. Feature importance based on out-of-bag error estimation, where importance is measured as the sum of decreases in error throughout all of
the decision trees generated. Orange bars represent variable mean values, green bars represent their SDs, and blue bars represent the correlation of
variable pairs.

Discussion

Principal Findings
As the world’s population is aging, the incidence of stroke and
other neuromuscular diseases is increasing, and the demand for
affordable and convenient physical therapy is rising [80]. Sensor
and communication technologies are readily available for
delivery and monitoring of home-based therapy; however,
human interaction is a critical design aspect in this context:
telerehabilitation programs are carried out without clinical
supervision, so that patients must motivate themselves to
perform exercises with sufficient intensity and frequency.

Lack of motivation has led to the study and development of
exergames [17,81], where physical activity facilitates games.
Although the effectiveness of these interventions has been
demonstrated [81,82], it may be further maximized by
incorporating cognitively challenging elements, learning, and
sociality [83] as older adults, who comprise most patients, show
a propensity toward these features [83]. As such, citizen science
presents itself as an intellectually stimulating motivational
framework with greater appeal to patients. By framing physical
exercise in citizen science, patients would be able to learn about
ongoing research, bring about scientific discoveries, and support
a cause they care about—all while adhering to their
rehabilitation regimen.

A second, yet equally important aspect in the design of
telerehabilitation systems is minimizing health care providers’
time commitment such that they can diagnose and monitor
multiple patients rapidly and simultaneously. However, this
undertaking can become especially challenging when human
behavior is abnormal [84]. Machine learning offers a viable
means of automating the classification of human movements.
Multiple examples exist where machine learning algorithms
successfully detect and analyze different behaviors with high
accuracy, as well as deviations from those behaviors, whether
the application was for safe driving [85], gaming [86], or
physical therapy [63-65]. Through machine learning algorithms,

devices can learn from new data such that they can update their
control strategies and dynamically adapt to the user’s behavior
over time. This feature is particularly useful for telerehabilitation
applications, as patients recover motor function and move
differently [84,87].

In this study, we present the use of machine learning to identify
and classify bimanual movements in VR. We demonstrate the
approach in the context of a citizen science software that is
dedicated for telerehabilitation. Commercial gaming systems
are advantageous for home-based rehabilitation because they
are relatively small, affordable, and user-friendly [88]. VR
gaming systems are particularly favored as they confer high
levels of immersion and increase user engagement [16,40,41,89].
In telerehabilitation, recovery is often hindered by patients’ lack
of motivation to perform prescribed exercises [83]. Thus, the
motivational aspects of home-based interventions are crucial
to their success. To address this challenge, we also incorporated
citizen science content into the application, such that the user
could contribute to an authentic scientific project and help clean
a polluted canal [32]. The task leverages human intellect as an
intrinsic motivator and has a strong potential to improve
patients’ sense of self-worth [32,88,90].

In all, 9 participants interacted with the citizen science system
through a set of 5 predefined bimanual gestures. Bimanual
training effectively improves rehabilitation outcomes through
several physiological mechanisms [52,53,59]. This clinical
approach could also target a wider range of patients with varying
levels of impairment. Specifically, for the Oculus Rift system,
a rigid link can be designed and 3D-printed for the Touch
controllers such they are affixed to one another [91]. The
custom-made link could enable passive exercise of the affected
limb in patients with moderate to severe impairment, whereby
the intact limb mediates coordinated movement of the paretic
side. In a future study, we will seek to measure movements of
participants with and without such fixture and compare its effect
on motor performance.
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One of the novelties of our approach lies in the application of
a movement classification algorithm to a VR exercise for
telerehabilitation. Although the movements we incorporated
into game control are carried out along the 3 orthogonal
anatomical planes and appear to be easily distinguishable, they
require coordinated flexion or extension of the shoulder and
elbow joints, as well as pronation of the forearms. For example,
extending the right arm to the right side of the body involves
simultaneous flexion of the shoulder, lateral rotation of the
shoulder, extension of the elbow, and pronation of the forearm.
Owing to these degrees of freedom, backward kinematics to
determine the angles of these joints would require more
information beyond the position of the Touch controllers relative
to the head-mounted display. To further support this notion, our
PCA results showed that the Tait-Bryan angles of the Touch
controllers relative to the head-mounted display, and not their
positions, are salient during movements. Most variations in
these angles likely resulted from simultaneous movement of
the shoulder and elbow joints and pronation of the forearm.

The variation of features based on relative angles is expected
to become extremely important for the classification of
movements when our approach is implemented on data from
patients with stroke. Stroke can lead to a wide range of
movement abnormalities, including spasticity, segmentation,
and compensation. However, the latter is best known for
sabotage rehabilitation efforts. In the face of reduced mobility,
patients with stroke tend to recruit body parts that are not
normally involved in certain movements to add degrees of
freedom to their kinematics. For example, patients with stroke
commonly use their trunk during reach movements to
compensate for the limited range of motion of their upper limbs
[92,93]. By reinforcing these strategies, patients perpetuate the
nonuse of the affected limb and do not recover their function.
Fortunately, compensatory movements would be easily detected
through our algorithm, whereby the angles of the Touch
controllers relative to the headset will not vary significantly.

The algorithm was used to classify the movements the
participant performed toward a genuine telerehabilitation
paradigm, where one’s motor performance is monitored
remotely by a clinician. The algorithm classified bimanual
movements objectively and reliably, reaching 99.9% accuracy.
The 0.1% inaccuracy was mainly related to lack of sensitivity
with respect to the presence of a movement. In other words, the
algorithm erroneously classified movements as instances of no
movement. This misclassification likely resulted from the use
of a moving-window scheme. The moving window covers 13
time steps. During the algorithm training, the instantaneous true
class of a window was defined as the mode of the true classes
of the time steps it covered. For example, if the window covered
2 time steps of shoulder flexion and 11 time steps of no
movement, its true class was no movement. At the beginning
and end of each movement segment, the window covered 7 time
steps of one class and 6 time steps of another class. The true
class was then arbitrarily defined as 1 of the 2 classes. The
accuracy of our approach may be further improved by refining
this scheme and eliminating false negatives or by applying an
alternative method to assign the true class of a moving window.

Future research could explore the use of alternative
dimensionality reduction techniques. Our selection of features
was based on the results of PCA, which informed us about which
variables characterized each movement. However, this method
may be inappropriate. In symmetrical movements performed
by the participant, PCA showed that variables in only 1 arm
were prominent. For example, when a participant performed
shoulder abduction to the right side of the body, 2 angles of the
left Touch controller and only 1 angle of the right Touch
controller were dubiously deemed salient. Potentially, nonlinear
dimensionality reduction methods such as Isomap, diffusion
maps, and principal manifolds could better identify sets of
variables that distinguish one movement from another [94-96].

The methodology presented herein can be extended to several
research directions. First, multiple classification schemes can
be applied in tandem to distinguish between static and dynamic
poses. This will be especially useful for measuring metrics that
are important for clinical evaluation, such as movement accuracy
[97], smoothness [73,98], and coordination [99].

We measured some motor performance metrics using data
collected by the VR system. We observed symmetry in motor
performance when comparing the right and left arms. In patients
with paresis, we expected significant differences in motor
performance between each side of the body. Specifically,
movements of the affected arm would present stiffness and be
segmented early in recovery, measured through lower mean
speed, reduced range of motion, and longer path lengths, which
will change over time as muscle function is recovered in the
affected arm. We also found considerable variation among
healthy participants with respect to smoothness. It is tenable
that this metric reflects the individualistic nature of user
interaction with the VR interface, whether it involves abrupt
initiation of movements or the sequential use of different sets
of upper limb joints. As such, smoothness should be examined
over the course of a movement rather than as a single score. To
further support this notion, Rohrer et al [73] showed that the
smoothness of pathological movements is characterized by a
series of peaks and dips, which become shorter and shallower
along recovery.

In addition to the quality of movements, one might consider the
use of cognitive cues in the analysis to treat low motivation.
Posture and movement have been previously demonstrated to
be closely related to engagement [100,101]. For example,
restlessness may be reflected by the frequently moving body
weight between the legs. Similarly, arousal can be expressed
by head rotation and extensive hand movements [102]. The
combined use of biometrics, such as heart rate, skin
conductance, and pupil dilation, may also provide important
insights into human behavior [103-105]. Incorporating such
psychophysiological sensory information could open the door
for multifaceted interventions in telerehabilitation [106],
although this path will require the use of additional sensors and
requires further research.

Finally, the classification algorithm can be enhanced to detect
and minimize compensatory movements. Compensatory
movements are nonphysiological movements that patients with
disabilities perform with their bodies to compensate for their
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limited range of motion. Essentially, the patients use muscles
that are not normally involved in the movement, thereby adding
degrees of freedom to it. Most commonly, patients tend to
displace their torso during reaching tasks to compensate for
their inability to move their upper limbs [92,107,108]. Although
such nonphysiological movements improve patients’ function
instantly, they are energetically inefficient, hinder functional
recovery, and pose a risk of injury [109,110].

Recently, Cai et al [111,112] explored the effectiveness of
machine learning in detecting compensatory movements in
patients with stroke. In their experimental setting, users sat on
a chair covered with a pressure distribution mattress and
interacted with a tabletop robotic manipulator [112]. Data were
collected on their motion from the mattress and from a VICON
3D motion capture system [112]. Users’ postures and
compensation were classified by an SVM algorithm, which
achieved an accuracy >96%. Although the sensors used in this
study are different in nature from those of commercial VR
gaming systems, the results are encouraging and suggest that
our approach is feasible. Work to assess our approach is
currently under way, and head-mounted display-based features
are expected to aid in the detection of compensatory movements.

Limitations
Our findings strongly support the viability of machine learning
in the accurate assessment of movements in telerehabilitation
with commercial VR systems. Nonetheless, the several
limitations of this study must be acknowledged. First, this study
was conducted on healthy participants only. Patients with stroke
exhibit a wide range of movement disorders, including loss of
mobility, loss of balance control, spasticity, chorea, and adoption
of maladaptive movements [113-116]. It is unknown whether
these disorders can be detected and correctly characterized from
sensor data, let alone be tracked and monitored over time. We
are currently collecting controlled clinical data from patients
with stroke and intend to challenge these questions once the
study is concluded.

The second limitation concerns the focus of our system on
bimanual training with the Oculus Rift. Although this setting
is practical, affordable, and has the potential to improve
engagement in telerehabilitation, it is still subject to the
limitations of machine-mediated patient–physician interactions.

During in-clinic meetings, a physician can assess the
physiological, behavioral, and emotional status of a patient
simultaneously. For example, physicians may evaluate skin
tactile feedback during grip [117] or the patient’s ability to
balance while performing gross motor movements [118]. This
cannot be accomplished in a telerehabilitation setting without
teleconferencing with a physician or encumbering the patient
with multiple wearable sensors, which would likely require
special training and the aid of another person. Nonetheless,
many of these in-clinic assessments may be feasible in
telerehabilitation by means of machine learning. Emotion
recognition from physiological [119,120] and behavioral
[121,122] signals has already been demonstrated. Similarly,
research has been carried out to predict patients’ ability to
balance [123] and infer pain levels from kinematic features
[124] and detect compensatory movements [125]. Thus, machine
learning methodologies may successfully quantify other aspects
of rehabilitation from data originating from a single modality,
thereby providing health care providers with more information
to monitor patients remotely.

Another nontrivial limitation of our study is the essence of
machine learning as a black box [60,126-129]. In recent years,
it has become widely accepted to trust machine learning
predictions without fully understanding the model from which
they are derived. The transparency of machine learning models
is paramount to users’ trust in machines [60]. In medical
applications, rather than perceiving decisions as arbitrarily made,
an understanding of their rigor and potential sources of errors
must be gained for good clinical decision-making. Furthermore,
machine learning algorithms are vulnerable to adversarial attacks
[127-129]. Minimal perturbations can significantly impact the
output of algorithms and remain unnoticeable to human
inspectors [127]. Thus, in future work, we will probe the model
and apply perturbing strategies to interpret it [60].

Conclusions
This study is a first step in our endeavor to incorporate machine
learning into VR-mediated telerehabilitation. We classified
bimanual movements using a bagged trees classifier and
achieved high performance. Work to expand on our findings
and hone our approach is underway, including experiments with
patients with stroke, development of an interpretable model,
and detection of compensatory movements.
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