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Abstract

Background: Virtual reality (VR) exergames have gained popularity in the rehabilitation of persons with neurological disorders
as an add-on therapy to increase intensity of training. Intensity is strongly dependent on the motivation of the patient. Motivation
can be increased by delivering variation within training and challenging exercises. However, patients are often underchallenged,
as exergame difficulty often does not match the patient’s ability. A Rasch analysis can establish hierarchy of exergame items in
order to assist the delivery of patient-centered therapy.

Objective: The aim of this study was to apply the Rasch model to create a hierarchical order of existing VR balance exergames
and to relate these exergames to the abilities of persons with neurological disorders, in order to deliver challenge and variation.

Methods: A total of 30 persons with stroke and 51 persons with multiple sclerosis (MS) were included in the study. All
participants performed a training program, lasting 3 weeks for persons with MS and 4 weeks for persons with stroke, in which
they performed VR balance exergames with a movement recognition–based system (MindMotion GO; MindMaze SA). VR
exercise scores, Berg Balance Scale scores, and clinical descriptive data were collected. Berg Balance Scale and device scores
were analyzed with the Rasch model using a repeated-measures approach to examine whether the distribution of exercise scores
fitted the Rasch model. Secondly, a person-item map was created to show the hierarchy of exercise difficulty and person ability.

Results: Participants completed a selection of 56 balance exercises (ie, items), which consisted of a combination of various
balance tasks and levels (ie, exercises). Using repeated measures, this resulted in a count of 785 observations. Analysis showed
strong evidence for unidimensionality of the data. A total of 47 exercises (ie, items) had a sufficiently good fit to the Rasch model.
Six items showed underfit, with outfit mean square values above 1.5. One item showed underfit but was kept in the analysis.
Three items had negative point-biserial correlations. The final model consisted of 47 exercises, which were provided for persons
with low to moderate balance ability.

Conclusions: The VR exercises sufficiently fitted the Rasch model and resulted in a hierarchical order of VR balance exercises
for persons with stroke and MS with low to moderate balance ability. In combination with the Berg Balance Scale, the results
can guide clinical decision-making in the selection of patient-focused VR balance exercises.

Trial Registration: ClinicalTrials.gov NCT03993275; https://clinicaltrials.gov/ct2/show/NCT03993275

(JMIR Serious Games 2022;10(1):e30366) doi: 10.2196/30366

KEYWORDS

digital therapeutics; virtual reality; exergaming; balance; stroke; multiple sclerosis; neurorehabilitation; Rasch analysis

JMIR Serious Games 2022 | vol. 10 | iss. 1 | e30366 | p. 1https://games.jmir.org/2022/1/e30366
(page number not for citation purposes)

Wiskerke et alJMIR SERIOUS GAMES

XSL•FO
RenderX

mailto:evelien.wiskerke@kuleuven.be
http://dx.doi.org/10.2196/30366
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Balance impairments are common in persons with neurological
disorders and lead to decreased mobility, increased risk of
falling, and accompanied injuries [1,2]. Consequently, balance
abilities further degenerate, general mobility reduces, and
dependence in activities of daily living increases [3]. This has
a significant negative impact on patients’ quality of life;
therefore, improvement of balance is key during
neurorehabilitation [4,5].

A high treatment dose is important for effective balance
rehabilitation; this consists of a high amount of repetitions and
challenging exercises [6]. Virtual reality (VR) exergames have
gained popularity for delivering VR therapy with a high
treatment dose during neurological rehabilitation [7,8]. VR
exergames are games that require physical movements to
perform exercises in a virtual environment with a therapeutic
purpose (eg, to improve strength, balance, or flexibility) [9].
VR is effective for increasing the training dose and delivers
good results when used in addition to, or as a partial substitute
of, conventional therapy [10]. VR training has been suggested
to be effective for improving balance outcomes and gait abilities
in persons with neurological disorders, such as multiple sclerosis
(MS) or stroke [11-13].

Motivation is an important factor in VR exergames because it
influences the duration of play, leading to a higher number of
repetitions performed and, thus, increased treatment dose. In
previous work by our research group, it was shown that after
an initial increase of motivation, over time, motivation in older
adults who played exergames decreased in comparison to
self-regulated exercises guided by paper forms [14]. An
explanation for these results could be found in earlier studies
regarding game development [15,16]. Motivation strongly
depends on factors like personal calibration of gaming
parameters to the player’s motor skills and goals, such as
adaption of the range of motion, playing position, or speed of
movement. In addition, variation within and between games is
important for motivation because insufficient variation reduces
focus and physical activity levels [17]. The variation of difficulty
is used to keep the player engaged over a prolonged time, but
also to progress the task training throughout the rehabilitation
process. Progression of task training is important to best
stimulate motor learning. This is supported by the challenge
point framework, which shows that the difficulty of a task should
be adapted to the skill level of the player in order for them to
be optimally challenged and to promote learning [18]. Specific
parameters that create challenge in balance VR exergames can
be speed of play or range of movement during weight shifting
[19,20]. From these results, we can presume that in order to
keep the patient motivated, it is crucial to challenge the patient
by delivering a variation of exercises, whereby the difficulty of
the exercise matches the abilities of the patient.

Within robotic upper-extremity therapy, adaption of the
difficulty of VR exergames to challenge the player has already
been investigated [21]. However, the adaption of the difficulty
of VR exergames has been performed based on the performance
of the player in specific chosen parameters. This is possible

within systems that have similar parameters to adapt difficulty,
such as the robotic-guided reaching task from Zimmerli et al
[22], who optimized the difficulty of the task by controlling the
time that is available for a patient to reach to a given target.
However, for therapy programs containing balance exercises
this is impossible, as balance exercises are built up out of many
different parameters that vary strongly between exercises [23].
Hence, the difficulty adaption of balance exercises needs to be
based not on the performance but on the ability of the patient.

A statistical framework that is used in scale development and
hereby investigates the difficulty of items and the abilities of
persons has already been found in rehabilitation research. La
Porta et al [24] investigated the 14 items of the Berg Balance
Scale using the Rasch model. The Rasch model was used to
investigate the construct of the scale and to order the items of
the balance scale from easy and successfully executable by all
participants (ie, sitting on a chair) to difficult items that were
not executable by all participants (ie, standing on one leg). The
model looks at the ability of the person on one hand and at the
difficulty of the item on the other hand, and combines both
along the continuum of a latent trait [25]. The latent trait is the
attribute that all items on the scale have in common and aim to
assess. In this study, the abilities of the persons under
investigation were those of persons with stroke and MS. The
items under investigation were the VR exergames from the
MindMotion GO system (MindMaze SA) that are aimed at
improving sitting and standing balance. The Rasch model has
been widely used to construct and revise measurement
instruments and test their psychometric properties [24,26]. The
applicability of the Rasch model to data with technology-guided
rehabilitation exercises has not been investigated so far and is,
thus, an innovative approach to use the model.

To determine if the Rasch model is applicable for delivering a
continuum of participant ability and exergame difficulty based
on the exergames scores, we evaluated the unidimensionality
(ie, if all exergames evaluate the same latent variable) and fit
(ie, item fit) of the exergames to the Rasch model. When a
continuum of the VR exercises were created, we would
investigate whether the exergames deliver enough variation and
challenge to the specific participants by establishing the
difficulty of each exergame, and we would evaluate whether
these difficulty estimates cover the whole spectrum of our
participants’ balance abilities.

Methods

Recruitment
We aimed to include 30 persons with stroke and 50 persons
with MS from the Valens Rehabilitation Clinic in Valens,
Switzerland. Patients referred for in-patient rehabilitation were
included if they met following criteria: (1) persons with a recent
stroke or suffering from MS with an Expanded Disability Status
Scale score between 3 and 6.5, meaning patients with moderate
to severe disability who need assistance during walking, as
confirmed by a neurologist; (2) above 18 years of age; (3)
referred for a minimum of 3 weeks of in-patient rehabilitation;
(4) reduced balance, based on a Berg Balance Scale score of
less than 52 out of 56 points; and (5) signed informed consent.
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Persons were excluded from the study if they had comorbidities
that could interfere with exergame performance, walking ability,
and balance (eg, visual or cognitive impairments, psychiatric
disorders, and musculoskeletal problems). To include
participants with a range of balance deficits that would represent
the neurological population, we aimed to include 50% of
participants with a Berg Balance Scale score below 45 points
(out of 56) and 50% with a Berg Balance Scale score equal to
or above 45 points. This study was prospectively registered at
ClinicalTrials.gov (NCT03993275).

Ethics Approval
Ethical approval for this study was obtained from the Ethics
Committee of the Sudostschweiz (BASEC [Business
Administration System for Ethics Committees] No.
2018-01248), according to the Declaration of Helsinki [27].

Device and Balance Exergames
VR exergames were performed with the MindMotion GO
(MindMaze SA). The MindMotion GO is a medical device
software system that supports the physical and cognitive
rehabilitation of adults and children in rehabilitation centers
and of adults at home (Figure 1). The MindMotion GO software
is meant to be installed on computers that run the Windows 10
operating system and is used in combination with the Kinect
motion sensing device (version 2; Microsoft). The device

consists of a screen to visualize the VR exergame and a Kinect
camera that traces 25 joints with a rate of 30 frames per second
to capture body movements. The camera, together with
appropriate motion tracking algorithms, can reliably measure
lower-extremity movement in healthy controls and is valid for
assessing spatiotemporal gait parameters and kinematic
strategies of postural control [28-30]. The software translates
human body movements into displayed avatar movements to
execute the VR exergame. The software includes a library with
rehabilitation exercises for the upper extremities, trunk, and
lower extremities. To specifically train trunk control and balance
in a seated or standing position, there are nine different VR
exergames available. Exergames vary in difficulty, depending
on the type of task, playing position, static or dynamic base of
support, velocity, and the use of dual tasks and go-no-go
responses. Figure 2 details the goals and various difficulty
parameters of the different exergames.

In total, nine different games are available, of which three games
can be played in both sitting and standing positions (Figure 2,
grey) and six games can be played only in the standing position
(Figure 2, orange and green). The difficulty increases over 10
levels. To collect sufficient data on all difficulty levels, only
levels 2, 4, 6, 8, and 10 were used in the study. This resulted in
60 combinations of VR exergames and levels, henceforth called
exercises.

Figure 1. A patient performing exercises with the device under investigation. Exercises in the standing position were performed without aid or physical
support, and a chair was placed at arm’s length of the participant for security.
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Figure 2. Details of the various exergames. Games are divided into static sitting and standing balance exercises, weight shifting in standing exercises,
and dynamic standing balance exercises. Games are described using the following parameters, where a green checkmark indicates the game contains
it, while a red X indicates it does not: high precision—high precision of movement is needed in order to steer the avatar well; speed predefined—the
speed is constant within the game and cannot be influenced by the player; speed increase over levels—the predefined speed increases with higher level;
obstacles in levels 2 & 4 or levels 6, 8, & 10—whether obstacles occur in these levels or not; moving obstacles—obstacles move from left to right or
up to down, interfering with the players trajectory; high cognitive demand—the game contains elements such as go-no-go reactions or choices between
collectables with different point counts. FBW: forward-backward step.

Design and Data Collection
We implemented a longitudinal observational design with
repeated measures of exercise scores and balance ability scores
over a duration of 3 weeks among persons with MS and 4 weeks
among persons with stroke. After inclusion, descriptive data of
trunk control, mobility, gait ability, fatigue, and cognition were
collected, and baseline assessments of balance were performed.
Once per week during each participant’s general physical
therapy session, balance was assessed with the 14-item Berg
Balance Scale by an experienced physical therapist. Each item
is rated on a scale from 0 to 4, resulting in a maximum score of
56 points. Rasch analyses support the validity of the Berg
Balance Scale, and test-retest, interrater reliability, and intrarater
reliability are considered adequate to good [24,31].

Participants performed the exercises in a sitting position if their
Berg Balance Scale score was lower than 45 points and in the
standing and sitting positions if their Berg Balance Scale score
was equal to or above 45 points. Exercises were explained and
participants completed a practice trial at the middle level of
difficulty for 30 seconds. This result was not used for analysis.
Participants played at a lower level if the score of the practice
trial was below 50% and at a higher level when 50% or higher.
Participants completed each exercise for 2 minutes. Exercise
scores were used for analysis. Participants rated exercise
difficulty on a 6-point Likert scale, ranging from 0 (“very easy”)
to 5 (“unable to perform”). Participants’ ratings of exercise
difficulty were used to adapt exercise choice. During each

therapy session, participants completed six different exercises.
A variation of exercises was completed throughout the therapy
sessions to make sure that each participant completed as many
different exercises as possible, while considering the safety of
the participant. Training was guided by an assistant under the
supervision of an experienced physical therapist who specialized
in robotics therapy.

Statistical Analysis

Sample Size
A minimum sample size of 150 observations was needed to
achieve stable item calibration within ±½ logits and 99%
confidence [32]. To reach this number of observations but still
be able to perform a feasible study design with equality between
groups, persons with MS were included in the study for 3 weeks,
whereas persons with stroke were included for 4 weeks. Multiple
observations were accounted for according to the following
rules: (1) at the start of the week, the first session was accounted
for as observation 1; (2) as soon as a participant completed an
exercise twice within the same week, this was a new
observation; and (3) the exergame scores were analyzed with
the scores on the Berg Balance Scale of that week. Thus, this
resulted in multiple repeated observations of the same
participant, creating data that were partially independent.
However, Rasch analysis can confidently be performed with
this type of data [33].
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Analysis
Descriptive statistics were used to describe the study
participants. The main analysis was performed using the Rasch
analysis. The Rasch model is a mathematical model that delivers
the expected response probability that shows how likely it is
that a person with a certain ability (ie, number of correct test
items) can perform an item of a certain difficulty (ie, number
of persons who succeeded on the item) in a correct manner. The
item level represents the difficulty of an item, whereby the
difficulty of items range from very easy to very difficult. The
person level represents the ability of the person that undertakes
the item. Both are expressed in the natural log of an odds ratio
(ie, logits) [34]. The higher the logit value, the more difficult
the item and the higher the ability of the person [35]. The
probability of success depends on the difference between the
difficulty of the item and the ability of the person [25]. The
advantage is that the scale under investigation becomes an
interval scale and, thus, an improvement of one logit has the
same value among the continuum of the scale independent of
the difficulty of the item. Therefore, the use of the Rasch model
enables the choice of the right exercise for the person’s ability
so that they are able to pass it without it being too easy, thus
creating enough challenge for the patient without developing
frustration.

We used Winsteps (version 4.5.5) to evaluate the fit of the data
to the Rasch model [36]. The partial credit model was used
because the structure of game scores is not comparable across
the different exercises [37]. To use the Rasch model in a correct
manner, unidimensionality and item fit were investigated, which
show if the various exergames all train the same latent trait. The
main concepts of the Rasch model are explained in the following
paragraphs.

Unidimensionality
Unidimensionality is given when all items (ie, exercises) under
investigation measure only one single latent variable [25].
Unidimensionality was investigated with the principal
component analysis of the residuals [38]. An eigenvalue of
greater than 2 was indicative for a potential secondary dimension
[39]. Hereby, we consider the amount of raw unexplained
variance within the contrast for our large number of items. A
contrast plot was used to evaluate unidimensionality while
looking closer at deviating items or patterns. The disattenuated
correlation coefficients were assessed to see if the data between
possible different dimensions are related and measure the same
latent trait. Values below 0.3 were considered problematic, and
values above 0.7 that are close to 1 would indicate that items
from different clusters measure the same trait [40].

Point-Biserial Correlation
In Rasch analysis, the item correlations are an immediate check
that the response level makes sense, meaning that with
increasing ability, item (ie, exercise) scores also increase. If the
observed correlation is negative, the response collection was
wrong. This can be due to several reasons (eg, a reversed survey
item was overlooked). These items were removed from the final
model.

Item Fit
Fit statistics quantify the difference between the theoretical
expectation based on the Rasch model and the actual item
performance of the raw data, thus indicating how good the data
fitted the Rasch model. Larger residuals denote an item that
does not fit the model. Item fit was investigated with the fit
statistics, whereby outfit mean square values between 0.5 and
1.5 are productive for measurement [41]. Values above 1.5 were
classified as showing underfit; this means that there was more
noise in the performance of the item and, therefore, this item
cannot be used to make adequate predictions [25]. Items that
showed misfit, without a clinical reasonable explanation, were
removed from the analysis.

Values below 0.5 were classified as showing overfit; this means
that multiple items were strongly interdependent and, thus,
redundant for measurement. This derives, for instance, from
items that are strongly interrelated by nature (eg, the
development in rehabilitation of standing, stepping, and
walking); therefore, responses are too predictable from other
exercises. In the case of scale development, removing redundant
items increases efficiency without reducing precision. However,
as we were not developing a measurement instrument, but a
construct of exercises, redundant items could be left in the
model, as they increase variation in the exercise program for
participants.

Ordering of the Item Thresholds
Thresholds represent the point where the chance of having a
score of 0 or 1, or 1 or 2, are equal. The item threshold shows
if the order of scores for a certain exercise is logical in a way
that a participant with the ability to succeed at the task at hand
can succeed when the items undertaken get more difficult. As
persons advance and their skills get better, it is important that
the categories of scores represent advancing levels of the
construct under investigation.

Distribution of Responses: Person-Item Map
The hierarchy of the exercise difficulty and participant’s abilities
is shown in a person-item map. In this map, the easiest items
are on the lower right side of the map, and the participant with
the lowest ability is displayed at the lower left side of the map.
The map allows visual inspection of whether the range of
exercises targets the range of participants’ abilities.

Differential Item Functioning
Differential item functioning (DIF) displays the difference in
difficulty of the items for persons with stroke and persons with
MS. This is assessed through comparison of both groups,
whereby persons with stroke and persons with MS should show
the same ability on an item, that is, the same logit value (ie,
same DIF measure).

Results

Overview
Descriptions of the persons with stroke and persons with MS
can be found in Table 1. A total of 32 persons with stroke and
52 persons with MS were recruited. A total of 30 persons with
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stroke and 51 persons with MS completed the data collection
step and were included in the analysis; 2 persons with stroke
and 1 person with MS dropped out after baseline measurements.
Severity of balance disorder as measured by the Berg Balance
Scale was comparable between pathology groups (P=.35). A
total of 785 observations were recorded to reach stable item
calibration. Adherence to the training program was very good
(99%). No serious adverse events occurred during training with
the device. Two falls from the chair without injuries or other

consequences were recorded during training; this is comparable
to conventional balance training at the limits of balance. Four
out of 60 exercises were not included in the analysis because
they were performed only two or four times and, thus, not
enough data were available (Tables 2 and 3). In total, 56
exercises were included in the analysis, together with the 14
Berg Balance Scale items. The analysis consisted of two rounds
to develop the final model (Table 2). The final model included
47 exercises (Table 4).

Table 1. Descriptions and clinical measures of the participants.

Participants with multiple
sclerosis (N=51)

Participants with stroke (N=30)Characteristic

55.00 (46.00-60.00)64.50 (55.50-76.75)Age (years), median (IQR)

Gender, n (%)

13 (25)22 (73)Male

38 (75)8 (27)Female

Type of stroke, n (%)

N/Aa27 (90)Ischemic

N/A3 (10)Hemorrhagic

Type of multiple sclerosis, n (%)

13 (25)N/APrimary-progressive multiple sclerosis

19 (37)N/ASecondary-progressive multiple sclerosis

19 (37)N/ARelapse-remitting multiple sclerosis

Hemiparetic or weaker body side, n (%)

26 (51)12 (40)Left

24 (47)16 (53)Right

1 (2)2 (7)Bilateral

N/A14.00 (11.25-20.75)Time poststroke (days), median (IQR)

16.0 (10.00-20.50)N/ATime since multiple sclerosis diagnosis (years), median (IQR)

Functional Ambulation Category, n (%)b

0 (0)13 (43)0-2

51 (100)17 (57)3-5

44.00 (33.50-47.00)41.00 (26.00-47.00)Berg Balance Scale score, median (IQR)c

17.00 (14.50-18.00)16.00 (13.00-18.75)Trunk Impairment Scale score, median (IQR)d

13.00 (8.00-17.00)11.00 (0.00-17.00)Dynamic Gait Index score, median (IQR)e

16.00 (11.00-28.00)21.00 (12.00-33.00)Timed Up and Go test time (seconds), median (IQR)f

25.00 (23.00-27.00)23.00 (20.00-24.75)Montreal Cognitive Assessment score, median (IQR)g

aN/A: not applicable; this measure does not apply to this group of participants.
bFunctional ambulation scores range from 0 (a patient cannot walk or needs help from two or more persons) to 5 (a person can walk anywhere
independently).
cThe Berg Balance Scale has a maximum score of 56 points, with more points meaning better balance.
dTrunk Impairment Scale scores range from 0 to 23, with higher scores meaning better trunk function.
eEach item of the Dynamic Gait Index is scored on a scale of 0 (severe impairment) to 3 (normal performance); the maximum total score is 24.
fThe Timed up and Go Test measures the time to stand up from a chair, walk 3 meters, turn, walk back, and sit down again; the lower the duration of
this assessment, the better.
gThe Montreal Cognitive Assessment has a maximum score of 30 points.
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Table 2. Overview of the performed steps in the Rasch analysis.

DecisionsItems, nObservations, nDescription of the analysisAnalysis
number

70785Initial analysis1 • Exclude 3 items based on negative point-biserial correlations
• Exclude 6 items based on item misfit

61785Final analysis2 • Although misfit, leave Car Racer level 10 in the sitting position
item in the analysis

Table 3. Reasons for deleting items from Rasch analysis and deleted items.

Deleted items (levels)Reason for deletion

The exercise was performed only two to eight times; thus, not enough data were available. • Cross the Road: free steps (2)
• Veggie Guard (2)
• Veggie Guard (10)
• Line Roller: sidesteps unilateral (10)

The exercise resulted in negative point-biserial correlations. • Cross the Road: free steps (4)
• Veggie Guard (4)
• Line Roller: sidesteps bilateral (10)

The exercise was excluded because of underfit. • Airplane (4)
• Airplane (8)
• Car Racer (2)a

• Cross the Road: forward-backward step (10)
• Veggie Guard (6)
• Mine Cart (2)a

aThese exercises were performed in a seated position.
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Table 4. Items included in the final model in order of decreasing difficulty.

Fit statisticsItem parameterItem (level)a

Point-biserial
correlation

Outfit mean
square

Infit mean
square

Model SEMeasure
(logits)

0.720.530.420.534.62Line Roller: sidesteps bilateral (10)

0.340.530.500.504.55Line Roller: sidesteps unilateral (8)

0.770.710.610.154.10Car Racer (8)

0.780.560.490.233.98Car Racer (10)

0.741.560.560.133.86Car Racer (10)b

0.850.500.450.313.10Line Roller: sidesteps bilateral (6)

0.740.870.630.092.81Car Racer (8)b

0.920.330.320.292.74Line Roller: sidesteps unilateral (6)

0.680.700.700.232.72Line Roller: sidesteps unilateral (4)

0.650.860.780.252.64Line Roller: sidesteps bilateral (4)

0.721.311.280.092.49Berg Balance Scale item 14

0.580.980.900.252.29Line Roller: sidesteps unilateral (2)

0.781.171.370.081.93Berg Balance Scale item 12

0.490.580.560.311.93Line Roller: sidesteps bilateral (2)

0.940.460.440.481.54Cross the Road: free steps (10)

0.690.500.480.361.53Veggie Guard (8)

0.781.031.040.081.47Berg Balance Scale item 13

0.830.870.900.081.32Berg Balance Scale item 11

0.660.790.790.171.10Car Racer (4)

0.631.051.000.140.78Car Racer (6)

0.720.900.970.540.69Cross the Road: free steps (6)

0.661.070.830.170.62Skiliner (5)

0.620.991.080.230.50Mine Cart (8)

0.880.240.330.630.38Cross the Road: free steps (8)

0.600.960.810.140.37Skiliner (4)

0.441.210.790.380.20Mine Cart (10)

0.660.800.910.190.19Skiliner (3)

0.800.971.180.090.07Berg Balance Scale item 7

0.651.341.110.110.02Car Racer (4)b

0.730.950.980.09–0.14Car Racer (6)b

0.681.201.530.28–0.19Cross the Road: forward-backward step (6)

0.741.431.070.10–0.22Berg Balance Scale item 8

0.720.700.760.25–0.33Skiliner (2)

0.561.201.170.13–0.34Mine Cart (10)b

0.660.830.850.35–0.35Cross the Road: forward-backward step (4)

0.770.830.890.10–0.59Berg Balance Scale item 10

0.770.741.120.11–0.73Berg Balance Scale item 9

0.591.341.830.56–0.94Airplane (2)

0.470.761.160.39–0.95Cross the Road: forward-backward step (8)
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Fit statisticsItem parameterItem (level)a

Point-biserial
correlation

Outfit mean
square

Infit mean
square

Model SEMeasure
(logits)

0.710.510.710.54–1.17Mine Cart (2)

0.510.750.760.27–1.27Mine Cart (6)

0.730.780.870.12–1.43Berg Balance Scale item 6

0.581.171.330.15–1.45Mine Cart (8)b

0.700.751.190.13–1.92Berg Balance Scale item 5

0.421.081.180.65–1.94Cross the Road: forward-backward step (2)

0.610.750.970.54–1.98Car Racer (2)

0.140.991.081.06–2.06Skiliner (1)

0.281.361.120.37–2.07Airplane (10)

0.700.270.680.41–2.17Mine Cart (4)

0.700.770.860.14–2.19Berg Balance Scale item 1

0.660.681.050.14–2.29Berg Balance Scale item 4

0.541.431.270.17–2.45Mine Cart (4)b

0.341.251.370.18–2.61Airplane (10)b

0.640.331.030.16–2.68Berg Balance Scale item 2

0.591.131.470.24–2.70Airplane (4)b

0.471.241.280.18–2.80Mine Cart (6)b

0.351.181.470.22–3.33Airplane (8)b

0.390.510.800.62–3.38Airplane (6)

0.630.491.090.45–3.87Airplane (2)b

0.460.801.310.25–4.03Airplane (6)b

0.00mmmmc1.83–8.97Berg Balance Scale item 3

aExergames are described in Figure 2.
bThese exercises were performed in a seated position.
cmm: minimum measure.

Unidimensionality
As part of the partial credit model, the principal component
analysis of the residuals showed that the first residual contrast
had an eigenvalue of 2.36, indicating a possible secondary
dimension with the strength of 2.3 items. This was close to the
predefined threshold for unidimensionality of 2 eigenvalues.
Given the large number of analyzed exercises (n=61), a possible
secondary dimension with the size of 2.3 items is very small.
In addition, the total unexplained variance in the first contrast
was only 3.9% (of the total raw unexplained variance in the
analysis). Visual exploration of the contrast plot of standardized
residuals revealed that the device exercises had similar factor
loadings and were grouped together. The Berg Balance Scale
items were within the same dimension; however, eight of them
covered a different facet of balance. All disattenuated
correlations were close to 1, indicating that all items within the
dimension measured the same trait. Therefore, it can be
concluded that unidimensionality was adequate.

Point-Biserial Correlation
In the first round of the analysis, three point-biserial correlations
were negative, indicating that item scores were negatively
correlated with balance ability. Consideration of the items from
a clinical point of view resulted in the exclusion of these items
in the final model (Table 3; Cross the Road: free steps, level 4;
Veggie Guard, level 4; Line Roller: sidesteps bilateral, level 8).
In the final model, there were no negative point-biserial
correlations, indicating that all items worked in the intended
way.

Item Fit
Based on outfit mean square statistics, values above 1.5
appointed the items that showed underfit and, thus, did not fit
the model. This resulted in the deletion of following items after
the first round of analysis (Table 3): Airplane, level 4, in the
standing position (1.79); Airplane, level 8, in the standing
position (2.12); Car Racer level 2, in the sitting position (1.77);
Cross the Road, forward-backward step, level 10 (1.64); Veggie
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Guard, level 6 (3.53); and Mine Cart, level 2, in the sitting
position (1.95). Various items showed values below 0.5,
indicating overfit and, thus, making items redundant. However,
in our study it was not the goal to delete redundant items, but
to find multiple well-targeted items to deliver variation to our
participants. Thus, we decided to keep these items in the model.
In the final round of the analysis, only one item (ie, Car Racer,

level 10, in the sitting position) showed slight underfit, with a
value of 1.56 (Figure 3). We set 1.5 as our threshold in the first
round of the analysis. However, Wright and Linacre [41] argue
that a threshold of 1.7 is acceptable for clinical observations.
Because the aforementioned item only slightly deviated from
the statistical rule and had its own logit value, we did not delete
this item from the analysis.

Figure 3. Bubble plot with the outfit mean square statistics. Game descriptions can be found in Figure 2. Outfit mean square values should range from
0.5 to 1.5; items below 0.5 show overfit and items above 1.5 show underfit. The size of the bubble shows the model SE. The number beside each
exergame represents the exergame level, and the ● denotes the games that are performed in a seated position. The number beside BBS represents the
scale item number. BBS: Berg Balance Scale; Cross FBW: Cross the Road (forward-backward step); Cross Free: Cross the Road (free steps); Garden:
Veggie Guard; LineR Bi: Line Roller (bilateral); LineR Uni: Line Roller (unilateral); Ski: Skiline.

Ordering of the Item Thresholds
The ordering of the item thresholds was acceptable. For 38
items, the whole score range was not used and, therefore, not
all thresholds were available. For nine items, the thresholds
were not in the correct order, meaning the score did not increase
stepwise with increasing ability.

Distribution of Responses: Person-Item Map
Figure 4 shows the final person-item map; the ability of the
participant is represented on the left side and the difficulty of

the items is represented on the right side of the figure. Person
ability ranged from –4.0 logits to 7.0 logits, and item difficulty
ranged from –4.0 logits to 4.75 logits. In general, it is seen that
for participants with lower to moderate balance abilities, a great
variation of exercises exists. The variation of exercises is lower
for participants with higher balance abilities, especially for
participants with very high balance abilities (eg, for logits of
4.5 and higher, there are no matching items available).
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Figure 4. Person-item map. This map shows the person ability and item difficulty in one scale expressed in logit values. Person ability is shown on the
left side, with the lowest person ability at the bottom and highest at the top. Item difficulty is shown on the right side, whereby items are organized from
least difficult at the bottom to most difficult at the top. The number beside each exergame represents the exergame level, and the ● denotes the games
that are performed in a seated position. The number beside BBS represents the scale item number. BBS: Berg Balance Scale; Cross FBW: Cross the
Road (forward-backward step); Cross Free: Cross the Road (free steps); Garden: Veggie Guard; LineR Bi: Line Roller (bilateral); LineR Uni: Line
Roller (unilateral); M: mean; S: one SD; Ski: Skiline; T: two SD.

Pairwise DIF Contrast
The pairwise DIF contrast between persons with MS and persons
with stroke showed a significant difference in difficulty in 15
out of 61 items. Of these items, only 10 showed a substantial
difference of 0.5 logits, which presents a clinically noticeable
difference between the groups. Of these, 7 items were exergames
and 3 items were Berg Balance Scale items.

Discussion

Principal Findings
Overall, the results of our study showed adequate
unidimensionality and good fit statistics of the exergame scores
to the Rasch model. The resulting person-item map showed that
the exergames covered the abilities of persons with neurological
disorders with low to moderate balance ability and delivered
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enough variation of exercises, especially for persons with
moderate abilities.

The VR exercises and many of the Berg Balance Scale items
showed adequate unidimensionality. However, eight Berg
Balance Scale items were at the limit of the first dimension and
measured a different aspect of balance than the other items. The
difference arose because the Berg Balance Scale measures static
and basic balance over short time periods, whereas the exercises
measure static, dynamic, and reactive balance over longer time
periods of up to 2 minutes. Consequently, both of these measure
balance but, as indicated by the analysis, they measure a
different aspect of balance.

Fit statistics showed that 47 out of 60 exercises fitted well to
the Rasch model. Three items had to be deleted from the final
model because of negative point-biserial correlations. This could
be due to wrongful score calculations, in combination with other
game parameters that have a considerable influence on the score
calculation, such as obstacles to avoid or simultaneous collection
of collectables. As a consequence, the score did not reflect the
participant’s ability (eg, the score goes up even if the ability of
the participant does not increase).

Six items were deleted after the initial analysis because of
underfit; thus, these items included too much noise and did not
fit sufficiently to the Rasch model. The corresponding items
showed a large IQR in scores. Clinically, it was noted that
certain exercises were too easy, such as Car Racer, level 2 (in
the sitting position). Consequently, participants with all abilities
were often distracted and reached various scores that did not
seem to match with their ability. In the final analysis, Car Racer,
level 10 (in the sitting position), showed slight misfit. We used
1.5 as a stricter cutoff value; however, Wright and Linacre [41]
argue that a threshold of 1.7 is also acceptable for clinical
observations. Since the exercise was in the top range of
difficulty, had its own logit value of difficulty, and was
appreciated by therapists to challenge the participant in a seated
position, it was deliberated among experts to keep the exercise
in the analysis. Usually, the goal of a Rasch analysis, when used
for scale development, is to delete items with misfit or that are
redundant, in order to make the scale leaner and less
time-consuming. However, in this study, we explored the data
for challenging exercises that fit the model in a proper manner.
Next to that, redundancy was not an issue in our study, as
variation of exercises was important for keeping the motivation
of the participant as high as possible.

In the second part of the analysis, the person-item map was
constructed to show the difficulty estimate of items and the
ability of the participants. The device under investigation
provided mainly VR exercises for the severely to moderately
affected participants, with most variation for the moderately
affected participants. The person-item map showed few patients
with very high balance ability in the top, for whom no suitable
exercises were available. However, it should be noted that not
all exercises were performed, as therapists did not use four
exercises because they were considered unsafe for the
participant. Regarding the more difficult VR exercises, it was
seen that the maximum score was not achieved. This shows us
that possibilities were available for this patient group, but these

were not clinically used. Therefore, the use of a harness in
higher-level balance exercises is recommended, in order to
adequately and safely challenge the patient on the limits of their
balance capabilities.

Research into VR-based adaptive training mainly investigates
how to challenge a patient within a single exercise by adapting
parameters, such as accuracy, speed, and amplitude of movement
[42]. By investigating only a single exercise, the importance of
variation as well as progression of tasks is not addressed. The
performed analysis provides an opportunity for the development
of training programs in neurological rehabilitation. In sports
injury rehabilitation, many protocols exist for graded
rehabilitation with variation of exercises and intensity of training
to optimally challenge the patient and work toward recovery.
In neurological rehabilitation, such clinical protocols are scarce.
A study by Wüest et al [43] is one of the few to discuss the
theoretical design considerations for an exergame-based
rehabilitation program that aims to improve walking in the
stroke population. The model showed a clear progression in
relearning how to walk, whereby exercises progressed from a
stable body position with a stable environmental context to
exercises with body transport and in-motion environmental
context. Our clinical data–based model showed similarity with
regard to the sequencing of exercises in the standing position
within the model, whereby a progression was seen from
weight-shifting activities to stepping activities and changing
environmental contexts throughout the different exercises.
Through the performed analysis, an idea was formulated toward
a protocol of training balance ability using technologies in the
neurological population and how to increase difficulty and, thus,
challenge, while progressing through the different rehabilitation
VR exercises. This model is further supported by the clinically
established Berg Balance Scale that validates the VR exercises
and delivers a clinically established starting point from which
to choose VR exercises in daily practice [44]. Further use of
the model in similar study designs and data types could show
the potential of the Rasch model in creating challenging and
adapted training programs with various technologies in specific
patient populations.

The analysis faced some limitations. From a statistical point of
view, the difficulty estimates of the various VR exercises lay
in certain items very close together, meaning that exercises were
almost equally difficult. The deduction of points for obstacle
hits was too large and, thus, had a rather big influence on the
exercise final score. Therefore, the person-item map should be
interpreted with caution, and clinicians should always integrate
their clinical opinion about the safety of the patient when
choosing exercises. Therefore, the person-item map is a support
rather than a fixed guideline. For the collection of the large
amount of data, the repeated-measures model was used. This
means that scores from one participant were used as independent
scores to establish a minimum number of observations. In this
study, an observation was created for each training week,
combining one Berg Balance Scale item with VR exercises until
a double-played exercise was noted. This resulted in the second
observation of the week, and so on. Based on clinical experience,
we presumed that participants’ skills stay rather constant
throughout the week and, thus, combining scores in this manner
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was feasible. The choice for this method was based on the
clinical character of the study. Not every participant could play
all exercises because of severely affected motor function and
increased risk of falling. Next to that, there were not enough
resources available to meet the high number of single
observations needed for stable item calibration. A previous
study by Anselmi et al [45] confirmed that repeated
measurements using a health questionnaire are feasible.
Therefore, we decided to use the repeated-measures model,
which resulted in a good fit to the Rasch model. Data were
collected from a broad neurological population with severely
affected to good balance abilities. We included persons with
MS and stroke, as both pathologies are often seen within the
neurorehabilitation setting, and these persons suffer from similar
impairments with regard to functional balance and trunk control.
Therefore, results are applicable to a broad neurological
population. Future research could also include healthy subjects
with whom to compare results.

The person-item map can stimulate integration of various VR
exercises, as it supports the clinician in the decision-making of
which exercise is appropriate for which ability as well as in
deciding how to continue challenging the patient by using VR
and following the continuum of exercises. In this way, this
would keep the player challenged and deliver variation in order
to keep the player motivated over time and, thus, increase
effectiveness of treatment. Future work could focus on the

implementation of the person-item map in the clinical field and
the feasibility of such within the device. In a second step, in
line with the systematic literature review of Zahabi et al [42],
the effectiveness of adaptive VR-based training should be
investigated in studies with a large sample size with long-term
follow-up, in order to assess the transfer of learned skills to
activities of daily living.

Conclusions
The Rasch model was shown to be applicable for creating a
continuum of participant ability and exergame difficulty based
on VR exergame scores. Unidimensionality of the data was
adequate and 47 items showed a good fit to the model. A
continuum of exercises was created, whereby it was seen that
persons with low and moderate balance ability could be
challenged well with the exercises and most variation was
available for persons with moderate balance abilities. With this
continuum, therapists are supported to choose the correct
exercise that delivers the optimal challenge according to the
player’s ability. These findings hold promise for the application
of the Rasch model within the future development of challenging
and tailor-made VR exercise programs for persons with MS
and stroke. In future work, the implementation of such a
program into clinical practice could be explored as well as the
extension of use of the Rasch model for data from different
rehabilitation technologies and patient populations.
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