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Abstract

Background: Although the pursuit of improved cognitive function through working memory training has been the subject of
decades of research, the recent growth in commercial adaptations of classic working memory tasks in the form of gamified apps
warrants additional scrutiny. In particular, the emergence of virtual reality as a platform for cognitive training presents opportunities
for the use of novel visual features.

Objective: This study aimed to add to the body of knowledge regarding the use of game-like visual design elements by specifically
examining the application of two particular visual features common to virtual reality environments: immersive, colorful backgrounds
and the use of 3D depth. In addition, electroencephalography (EEG) data were collected to identify potential neural correlates of
any observed changes in performance.

Methods: A simple visual working memory task was presented to participants in several game-like adaptations, including the
use of colorful, immersive backgrounds and 3D depth. The impact of each adaptation was separately assessed using both EEG
and performance assessment outcomes and compared with an unmodified version of the task.

Results: Results suggest that although accuracy and reaction time may be slightly affected by the introduction of such game
elements, the effects were small and not statistically significant. Changes in EEG power, particularly in the beta and theta rhythms,
were significant but failed to correlate with any corresponding changes in performance. Therefore, they may only reflect cognitive
changes at the perceptual level.

Conclusions: Overall, the data suggest that the addition of these specific visual features to simple cognitive tasks does not
appear to significantly affect performance or task-dependent cognitive load.

(JMIR Serious Games 2022;10(2):e35295) doi: 10.2196/35295
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Introduction

The Emergence of a Cognitive Training Industry
The recent widespread availability of game-like cognitive
training products in the form of apps on smartphones and tablets,

along with a growing public awareness of cognitive training in
general, have all contributed to the creation of a
multibillion-dollar industry [1]. However, long before the first
commercial brain training apps appeared on smartphone app
stores, a series of widely publicized studies helped set the stage
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for broader public acceptance of cognitive training. In one such
study from 2003, Bavelier and Green [2] documented an
increased attentional capacity for players of action video games.
Although such differences are easily dismissed as a result of
innate abilities or self-selection (eg, individuals with these
capacities tend to gravitate toward gaming), the authors notably
demonstrated that similar capacities could also be acquired by
previously nongamer participants through a simple training
regimen derived from the same games [2]. Another early,
influential training study that received mainstream exposure
was that of Jaeggi et al [3]: “Improving fluid intelligence with
training on working memory.” The authors documented
significantly increased fluid intelligence (the ability to reason
and solve new problems independently of previously acquired
knowledge) after cognitive training using a working memory
task [3]. The study subsequently received widespread media
coverage in outlets such as Wired magazine. Finally, an
ambitious, multisite, longitudinal study made additional news
headlines in 2017 when it concluded that a kind of adaptive,
speed-of-processing task known as Useful Field of View (UFoV)
training resulted in a significantly decreased risk of dementia
up to 10 years after the training intervention [4]. These studies,
among others, were instrumental in increasing public awareness
of the possibility that explicit training might yield cognitive
dividends and contributed to the recent industry boom.

Ongoing Controversy
However, outside the world of public opinion, the overall
efficacy of cognitive training remains controversial. Proponents
have demonstrated benefits ranging from better scores on
standard cognitive assessment tests [5,6] and improved
performance in driving aptitude tests [7] to general gains in
memory, attention, and visual-spatial ability [8,9]. Nevertheless,
recent studies that report little or no benefit from cognitive
training, including screen-based training, also exist in substantial
numbers [10-13]. The discrepancies in study results are variously
attributed to a lack of agreement on experimental methodology,
outcome assessment, and the design and implementation of the
cognitive training tasks themselves [14,15]. Even simple
deviations from the convention can potentially have a major
impact on the results. For example, a recent study by Linares
et al [16] found no evidence of a near-transfer effect (ie,
performance improvements in related tasks following training),

even between very similar working memory tasks. However,
an inspection of their protocol revealed that the training task
used in the study was nonadaptive (ie, task difficulty was not
adjusted to match participants’ natural abilities or prior training
gains). This detail may have negatively affected the study’s
findings, as recent studies argue that adaptive training may be
an essential component of the success of cognitive training
[15,17]. In addition, environmental factors may have contributed
to the lack of an observed effect in the Linares et al [16] study
as the training sessions were unsupervised, but the assessment
sessions were conducted by study staff, which is a source of
social stress and a potentially confounding variable [18,19].

Clinical Studies Versus Commercial Cognitive
Training
Makers of commercial cognitive training apps regularly
advertise their products as proven effective and based on real
science [20]. Some have even licensed or repurposed the very
tasks that were used in well-regarded clinical studies [21].
However, just as simple deviations from task design convention
may risk negating training effects in clinical studies, the
repackaging of promising cognitive training tasks for use in
commercial applications must be carefully considered to
minimize any risk of introducing new cognitive demands.

For example, one primary assessment outcome used in the 2017
study cited previously was the UFoV test. This test, which
contains several subtests to assess short-term recall and spatial
memory, requires participants to identify a previously displayed
stimulus from among various similarly shaped distractors.
Depending on the subtest, the stimuli may appear in either the
central visual area, the peripheral area, or both. Although the
original task, first developed in 1986, was designed as a clinical
assessment tool for use with a standard monochrome computer
monitor, commercial adaptations of the UFoV task generally
add a number of additional visual and narrative elements to
make the task more appealing to customers. These elements
include the use of cartoon-like icons; colorful, task-irrelevant
background imagery; thematic storylines; scoreboards; and
others (Figure 1). Although the use of these elements has
become commonplace in the commercial cognitive training
industry, consensus on whether such modifications significantly
affect the effectiveness of their core tasks is still elusive.
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Figure 1. (A) Useful Field of View (UFoV) assessment test compared with (B) commercial cognitive training task dual decision (Posit Science
Corporation) designed to train UFoV capacity. The task depicted on the right uses a similar, circular task design but includes colorful icons, scoreboards,
and a game-like setting.

A Closer Look at Gamified Tasks
Gamification is generally defined as the process of adding game
elements to nonentertainment settings to increase motivation
and engagement [22]. Game-like elements may broadly be
considered to include visual elements such as colorful icons or
patterns, evocative imagery, and playful animations, along with
elements designed primarily to stimulate motivation, such as
scoreboards and real-time performance feedback. When coupled
with cognitive tasks specifically designed to maintain or improve
one’s cognitive abilities, this result may be referred to as
gamified cognitive training. The embrace of gamification as a
method of increasing user engagement and enjoyment of
otherwise dull, repetitive tasks is indeed supported by a
significant number of studies [22-25]. However, the full picture
of the potential impact of gamification on cognitive performance
is less conclusive. Two recent comprehensive reviews [22,26]
that examined the use of gamification strategies in brain training
and general cognitive assessment studies overwhelmingly found
that although gamified training appears to boost participant
motivation, study heterogeneity impeded the drawing of clear
conclusions with respect to performance or ecological validity
(ie, the degree to which experimental results are generalizable
to real-life situations). For example, the authors of the first study
[26] identified no fewer than 28 game-like elements used in the
33 studies surveyed. These included positive and negative task
feedback, time pressure, storylines or narrative elements,
performance status displays, and many others. The second
survey [22], from 2020, found that of the 49 papers examined,
no study reported on the effect of a single element alone and
that the game elements were investigated only in combination,
making it impossible to establish whether individual elements
had measurable effects.

For example, the 2017 study by Mohammed et al [24] compared
two adaptations of an n-back task: a stripped-down task and
one that contained a visually rich display combined with
multiple audio soundtracks. Although the authors found

increased task enjoyment for the game condition, there were no
significant differences in the long-term outcomes between the
gamified and nongamified tasks. However, given the complex
set of features included in the gamified version, they
acknowledged that more granularity was perhaps needed to
fully understand which features might prove to be more
successful than others [24].

Another study with a sizable participant pool (n=107) found
negative correlations between certain game elements and task
performance [27]. The authors speculated that unneeded stress
and new cognitive demands might have been induced by
distracting game elements such as persistent score displays,
leading to reduced performance. However, rather than individual
game elements added to a bare-bones task, the study design
removed specific game elements from a larger group of game
features. This approach seems to leave the possibility open for
the remaining elements to compensate for the removal of a
single element, making it difficult to know for sure which
element or elements might have specifically accounted for the
new cognitive demands [27].

In summary, as gamification encompasses a great number of
individual elements, a lack of precision and homogeneity
between studies has hampered the ability to draw consensus
conclusions regarding which game elements, if any, may affect
task performance. In addition, although motivational features
such as scoreboards and real-time performance feedback have
been widely studied [25,27-31], the specific impact of certain
purely visual features, such as 3D depth and colorful, immersive
backgrounds, is less well-documented, despite being
increasingly encountered in consumer products such as game
systems and dedicated virtual reality (VR) headsets.

Therefore, this study aimed to add to the body of knowledge
regarding the use of game-like visual design elements by
specifically examining the application of two particular visual
features: immersive, colorful backgrounds and the use of 3D
depth. These features were specifically chosen because of their
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underrepresentation in previous studies and their increased use
in VR and augmented reality technology, a rapidly growing
consumer market segment that also contains cognitive training
products. We hypothesized that task performance may be
adversely affected by additional visual processing demands but
that the motivational effects documented by previous researchers
may, in turn, compensate or reverse these effects. Finally, using
electroencephalography (EEG) as an additional quantitative
outcome, we hoped to gain insight into the possible neural
correlates for any observed performance impact.

Methods

Study Design and Sample Size Considerations
Two primary outcomes were used to examine the impact of
visual gamified design elements on cognitive task performance.
Cognitive activity will be broadly measured along the midline
using EEG (see the EEG Data section for details regarding
EEG). Raw task performance was assessed by analyzing task
accuracy and participant response time. The experimental task
was a simple visual working memory task that required the
participant to pick out the previously displayed stimulus from
several distractors. To better control the testing environment,
the task was coded for display in a head-mounted display
(HMD) environment rather than a traditional monitor screen
(see the Experimental Task section).

The use of an HMD serves two purposes: (1) to precisely control
the display brightness and task visual angle (VA) across
participants and experimental conditions and (2) to minimize
potentially distracting external stimuli. For these and other
reasons, several recent papers have recommended the use of
HMDs, describing them as among the “most fitting platforms
for applying nonpharmacological computerized neurocognitive
assessments” [14] and a “frontier for neurorehabilitation” [32].

The current experimental task was previously used in a related
study exploring changes in the size and position of visual stimuli
and showed a robust effect size (>0.5) between conditions [33].

For this study, we undertook several additional modifications
to further boost statistical power. First, to reduce
between-subject variability, an adaptive task design was used
in which task difficulty was automatically modulated to ensure
maximum participant engagement. The precise method is
described in more detail in the Adaptive Task section.

Second, an intrasubject protocol design exposed each participant
to all experimental conditions. This enabled the use of
repeated-measures ANOVA and Wilcoxon signed-rank sum
tests, which are known to be particularly robust in establishing
significance in small-n situations [34,35]. With this study design,
we used the G-Power algorithm [36] to determine that a sample
size of n=20 should be sufficient to enable us to achieve
adequate statistical power at the 5% confidence level.

Test Environment
A standalone HMD (HTC Vive Focus, HTC Corp) in its default
configuration was chosen for the test environment. The cognitive
training task was created in Unity 3D, a programming
environment commonly used for creating 3D visual content for
VR headsets (Unity 3D; Unity Software Inc).

HMD systems typically rely on handheld pointers for user input.
However, such input devices are not appropriate for EEG
studies, as they could introduce muscle-related artifacts. To
address this, a touch screen smartphone was programmed to
wirelessly send network commands to the HMD. A soft foam
overlay with holes corresponding to the locations of the
on-screen virtual buttons was added to the screen. With this
combination, the participants could identify the smartphone
controls in a tactile manner using only their hands without any
need to view the screen. This is crucial as the participant cannot
see the smartphone screen while wearing the headset.

During the experiment, participants were seated and instructed
to hold the smartphone controller in their laps, cradled by both
hands (Figure 2). The experimental task was performed by
tapping the virtual buttons on the screen with both thumbs while
minimizing other body movements.

Figure 2. Smartphone interface with a foam overlay.

JMIR Serious Games 2022 | vol. 10 | iss. 2 | e35295 | p. 4https://games.jmir.org/2022/2/e35295
(page number not for citation purposes)

Redlinger et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Experimental Task
To emulate a typical commercial cognitive training task, we
designed our core task to incorporate a number of cognitive
processes drawn from both gaming research [2,37] and the
cognitive training literature [3,4,38]. These included visual
memory recognition, divided attention, perceived time pressure,
and distractor avoidance. The experimental task required
participants to focus on a sequence of stimuli located in the
center of the HMD screen. At the start of each new trial, the
previously displayed center stimulus was moved to 1 of the 4
corners of the display, and a new stimulus took its place in the
center. A total of 3 randomly chosen images were placed in the
remaining 3 corners so that the screen always contained 1 center

image and 4 images in the outer corners. To proceed to the next
trial, the participant was asked to identify the stimulus that was
previously in the center of the display. Participants performed
this task by tapping the virtual button on the smartphone screen
corresponding to the location of the object they wished to select.
Once a choice was made by the participant, the answer choices
disappeared, and the stimulus currently at the center of the
display was reassigned to 1 of the 4 corners. A new stimulus
then took its place in the center (Figure 3). A trial was also
considered ended if the allotted time elapsed before a selection
was made. Please see the Adaptive Task and Experimental
Protocol sections for specific details related to trial times and
durations.

Figure 3. Sample trials showing the center stimulus and peripheral answer choices: the current answer choices (small images) and the next stimulus
(large image) are displayed simultaneously. Preceding the first trial, only the initial stimulus is displayed. Participants select correct answers in the
subsequent trials, as demonstrated with cartoon hands. In each case, the correct answer corresponds to the center stimulus from the previous slide.

In each trial, the center stimulus and incorrect answer choices
were selected at random by the software such that no duplicate
images appeared together. The trials lasted approximately 1.2
seconds (SD 116 milliseconds) on average and were designed
to elicit continuous cognitive load as both the current answer
choices and the following stimulus were displayed
simultaneously. This was to minimize the usual peaks and
valleys in the cognitive activity that often accompany tasks that
alternate between stimulus presentation and participant response.

The goal of choosing this experimental task was to create a
minimally complex task that could nevertheless reliably elicit
sufficient cognitive load with little prior task training. Although
the basic mechanism is inspired by the classic n-back task, we
restricted our task to 1-back to minimize individual differences
in performance ability commonly associated with higher degrees
of n [39].

The figures themselves are from a set of 20 cartoon animal
images, all drawn in a similar style but differing in shape and
color. The image collection was licensed for noncommercial
use from a popular internet vendor. It was chosen for its design
similarity to prevailing commercial cognitive product designs,
which frequently use a similar cartoon design aesthetic.

Adaptive Task
An adaptive model was chosen for the experimental task to
ensure similar engagement levels for all the participants. As the
experiment progressed, the task difficulty increased
incrementally until the participant failed to respond within the
allotted time window or made ≥2 sequential mistakes. The task
difficulty level was reflected in the amount of time available
for the participant to choose an answer. As the difficulty level
rose, this amount of time decreased in 50-millisecond intervals.
Conversely, if the difficulty level decreased, more time (50
milliseconds) was made available to complete each trial. The
prevailing task difficulty level affected the experiment in the
following two ways:

1. A visible countdown timer just below the task area
displayed the amount of time allocated to make a selection.
As the trial time progressed, the bar’s contents filled
incrementally from left to right, reminding the participant
to answer as quickly as possible. The bar was purposefully
designed to be as unobtrusive as possible so as not to
distract from the primary task (Figure 4).

2. Failure to make a selection within the allotted time resulted
in the trial being marked incorrect, and the next stimulus
was presented. Making any selection (correct or incorrect)
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resulted in the timer pausing briefly (200 milliseconds)
before being reset for the next trial.

At the end of each trial, the response (or failure to respond), the
reaction speed, and accuracy were recorded. Only trials in which
the participant actively made a selection were included in the
reaction time assessment.

Figure 4. Adaptive task countdown timer.

Experimental Protocol
A total of 20 participants, aged 21 to 48 (mean 28.6, SD 7.7)
years, were recruited from among students and staff at the Tokyo
Institute of Technology and agreed to participate in the
experiment after signing an informed consent form. The 20
participants included 6 (30%) women and 14 (70%) men, all
right-handed, with no history of color vision disorders. In
addition, all participants reported having had a previous
experience using an HMD.

The protocol was executed in the following order: task training,
EEG baseline activity measurement, and experimental

conditions. The EEG baseline measurement phase (60 seconds)
involved viewing a black background with open eyes to record
nominal cognitive activity with no visual stimuli.

The experimental conditions comprised 4 distinct visual
representations of the same core task: unmodified (the stimuli
were simply placed on a flat plane against a black background),
background distractor (stimuli + irrelevant background image),
3D depth distractor (stimuli presented at different virtual
distances from the participant), and game distractor (dynamic
motivational features in addition to the 2 previous distractors;
Figure 5).

Figure 5. The four experimental conditions: the unmodified task on a black background; the task performed atop an irrelevant, colorful background;
the task performed in 3D space; and the task with both background and depth distractors plus an interactive scoreboard and user feedback. Horizontal
dimensions of core task limited to a 20º visual angle.

The image used in the background distractor condition was a
cartoon forest scene obtained from the same provider as the
stimulus images. The colors, detail level, and visual style were
similar to those of the stimuli; however, there was no other
obvious contextual connection. The game condition’s dynamic
features comprised a scoreboard and real-time performance
feedback. The performance feedback was implemented as
follows: an incorrect user response caused the selected answer
choice to briefly shake back and forth to indicate no, whereas
a correct choice caused the item to gently pulse outward toward
the user. These animations lasted exactly 200 milliseconds. In
addition, a scoreboard at the top of the display indicated the
current accuracy rate and total score for the current trial set.

All experimental conditions were repeated twice in a randomized
order for a total of 8 sets per participant. Each set contained 50
trials and lasted approximately 60 seconds. A 30-second break
(black screen; no visual stimulus) was imposed between the
training and baseline phases. This was done to prevent
contamination of the baseline EEG data by lingering arousal

from training. Between each set of trials, there were additional
10-second rest breaks.

The task VA for all conditions was set at 20º, corresponding to
the outer edges of the answer choices, measured horizontally.
The VA was calculated using the following standard formula:

VA = (S × 57.29) / D (1)

Here, S is the size of the object, and D is the distance from the
observer.

This VA was shown in a previous experiment to be optimal for
maximizing the task training performance [33]. With the
exception of the 3D depth distractor and game distractor
conditions, all visual task elements were precisely placed at a
virtual distance of 2 m from the user, as viewed within the
HMD. In the conditions that made use of 3D depth, the answer
choices (and colorful background) remained at the same virtual
distance of 2 m; however, the primary central stimulus moved
forward to appear at a distance of 1 m from the user. In the
Unity 3D programming environment, 1 unit of space is
equivalent to 1 perceived meter of distance. To set the VA for
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each experimental condition, we specified the desired VA and
solved the abovementioned equation for S. The value of S was
applied to the visual task automatically by the software for each
new experimental condition before the presentation of the first
task trial.

Body movements, particularly eye movements, have a high
possibility of introducing movement artifacts into the EEG data.
Therefore, participants were instructed to blink and adjust their
posture as needed during rest breaks but to refrain from doing
so during the trial sets themselves.

Visual text messages on display announced the beginning and
end of these break periods. The latter message flashed off 2
seconds before the start of the following set. The total time
required to complete each set of trials varied according to
participant ability (as dictated by the rules of the adaptive task)
but lasted approximately 60 (SD 7.49) seconds on average. This
resulted in an overall experimental protocol duration of 11 to
12 minutes (Figure 6).

Figure 6. Protocol flow: following training and electroencephalograph (EEG) baseline recording, 8 experimental phases, each containing 50 trials,
were conducted. A 10-second rest separated each experimental phase. The content of the experimental phases was randomly selected from the 4 condition
types (unmodified task, background distractor, 3D depth, and game distractor) and balanced so that each participant experienced each condition twice.
Unless otherwise noted, all times are in seconds; completion times for training and experimental phases are approximate. Total time to complete the
protocol varied from 11 to 12 minutes per participant.

Training
Before the start of the protocol, the task rules were explained,
and each participant was granted time to practice the task until
they were able to achieve a 75% average accuracy rate for at
least 10 trials. Some participants mastered the task more quickly
than others, such that the training period lasted between 30 and
90 seconds, with an average of 44 (SD 17) seconds. As the
adaptive mechanism was also engaged during the training
period, the training process also served to establish the starting
difficulty for the participant for the following experimental trial
sets.

EEG Data
EEG signals (microvolts) were acquired from the frontal, central,
occipital, and parietal regions using a wireless 8-channel EEG
amplifier (OpenBCI 32-bit Board Kit, OpenBCI, Inc) with a
sampling rate of 250 Hz. The electrode locations were Fz, Cz,
Oz, and Pz, placed according to the international 10 to 20
system, and were specifically selected to capture a broad range
of activity along the midline. In particular, we were interested
in electrode positions Fz and Cz because of their frequently
cited relationship with concentration and cognitive load, whereas
Oz and Pz were chosen because of their proximity to the visual
cortex and prior association with both attention and complex
visual decoding [40-43]. Gold cup electrodes were attached to
the scalp and ear lobes using an electroconductive gel, and an
initial impedance of <5 kΩ across all electrode positions was
ensured. Additional electrodes were affixed above and below
the participants’ eyes to record electrooculogram signals caused
by blinking or other facial movements for later use in noise
reduction and signal optimization [44].

EEG data were recorded throughout the experiment, although
only the final 30 seconds of activity were analyzed for each
phase. This was to ensure that the task adaptation algorithm had
been given sufficient time to adjust the difficulty levels for each
participant before reaching the analysis time window. Time
markers for determining the analysis epochs were embedded in
the EEG data stream directly using real-time network packets
generated by the experimental task. Through the use of this
mechanism, we hoped to precisely measure similar levels of
cognitive engagement for each participant.

Task Performance
Overall reaction time and task accuracy were calculated for
each phase and averaged across all trials for a given
experimental condition.

Analysis Method
The software used for EEG data preprocessing and analysis was
MATLAB R2019b (MathWorks, Inc). The raw EEG data were
notch filtered (50 Hz) and high-pass filtered at 4 Hz using
built-in Butterworth and bandpass filters in MATLAB. As noted
earlier, the electrooculogram data were recorded in tandem with
the EEG for each participant. This enabled us to create
customized artifact recognition routines that were individually
applied during the data preprocessing phase for each participant.
Additional muscle artifacts identified from a visual inspection
of the EEG data plots were also removed in full from the time
series before analysis.

Fast Fourier transforms were calculated for the following
spectral ranges: theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20
Hz), and high beta (20-28 Hz), with 30-second windows for
each phase of the experiment. The total sum of the power values
from each range was divided by the total number of EEG data
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samples. The resulting score was normalized by subtracting the
overall population mean (combined EEG data of all participants
divided by the number of participants) and dividing by the SD
to obtain the power index. Fast Fourier transforms and statistical
analyses were performed using built-in MATLAB functions.

Shapiro-Wilk tests showed that we could not necessarily operate
under an assumption of normally distributed data. Therefore,
statistical significance was determined with a repeated-measures
ANOVA, followed by a nonparametric Wilcoxon signed-rank
test to determine the significance of any changes in power
between the experimental phases. The Wilcoxon test was chosen
because of the large individual differences in performance
observed among participants, nonnormally distributed data, and
the within-subjects nature of the study.

Task performance data were averaged to obtain an overall
accuracy and reaction time value for each participant per task
condition. Individual results were averaged, and similar
Wilcoxon signed-rank tests were conducted.

When looking at the preliminary data, it became quickly
apparent that the performance levels varied significantly from
participant to participant. Some individuals were able to
complete the task quickly and accurately, whereas others
struggled to respond and made frequent mistakes. This
contributed to a large SD in the overall results, which could
potentially complicate the drawing of meaningful conclusions.
To address this, participants were additionally subclassified into
high- and low-performance groups for further analysis. The
selection criteria were based on the average overall task
difficulty level achieved by each participant.

Ethics Approval
The experimental protocol was approved by the ethics board of
the Tokyo Institute of Technology (2019059).

Results

EEG Data
The presence of gamified visual features led to observable
changes in the spectral power at all EEG locations. In particular,
the occipital and parietal areas showed noticeable increases in
beta EEG power for the 3D depth distractor condition and in
the theta rhythm during the background distractor condition.
Overall, 1-way repeated-measures ANOVA showed significant
differences in the high-beta range for all electrodes tested (Fz:
F3,76=3.75, P=.02; Cz: F3,76=4.09, P=.01; Pz: F3,76=2.82,
P=.046; Oz: F3,76=2.97, P=.04). Post hoc Wilcoxon signed-rank
tests revealed that with the exception of the game condition at
Fz, all individual increases in the high-beta rhythm between the
unmodified and experimental conditions were significant at the
5% confidence level. However, the differences between
individual experimental conditions were not significant.

In contrast, for the theta range, only the results at Oz displayed
significant variation (F3,76=3.20; P=.03), and only one individual
experimental condition, the background distractor, proved to
be significant (n=20; Z=−2.81; P=.00495) in the post hoc
analysis. Changes in the alpha rhythm did not prove to be
significant at any electrode position (Figure 7).

It is noteworthy that the game condition, which also included
the 3D depth distractor, did not reach the same levels of
cognitive activity as the depth-only condition for the beta range.
This may indicate that the presence of additional distractions
in the game condition inhibits the overall impact of the 3D depth
effect. However, in the theta range, the presence of background
distraction in both the background and game conditions led to
similar cognitive responses.
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Figure 7. Spectral power by condition and frequency at electroencephalograph locations Fz, Cz, Pz, and Oz; n=20, SE; statistical significance calculated
with Wilcoxon signed-rank test (*P<.05).

Performance Data
The 1-way repeated-measures ANOVA comparing the 4
conditions showed no significance for either task speed
(F3,72=1.21; P=.31) or accuracy (F3,72=0.143; P=.93). In general,
the presence of colorful, task-irrelevant backgrounds led to
slight reductions in accuracy but had little impact on
performance speed. Conversely, the presence of 3D depth cues
seems to have slightly affected reaction time but not accuracy
(Figure 8).

As noted previously, we took the additional step of separating
participants into high- and low-performance groups according
to ability (average maximum task difficulty achieved during all
trial sets) as a supplemental analysis. This was because of a
large SE observed in the performance data, which we felt had

the potential to mask underlying trends. Although the resulting
subgroups were too small to deliver meaningful statistical power,
the results revealed several nuances and presented a potentially
interesting direction for a follow-up investigation.

For task accuracy, the additional visual distractions present in
the multiple-distraction game condition appear to have had a
cumulative negative impact on high performers. However, a
seemingly opposite effect was observed in the low-performance
group, which cumulatively achieved the highest accuracy in
this condition.

In terms of task completion speed, our results did not show any
significant differences between conditions, even when observing
only the more internally homogenous high-performance
subgroup (Figure 9).

JMIR Serious Games 2022 | vol. 10 | iss. 2 | e35295 | p. 9https://games.jmir.org/2022/2/e35295
(page number not for citation purposes)

Redlinger et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. Mean task performance (reaction time and accuracy) by condition and group; SE; statistical significance calculated with Wilcoxon signed-rank
test (P<.05).

Figure 9. Mean task performance (reaction time and accuracy) by condition and high- and low-performance subgroup; SE.

Performance and EEG Compared
Perhaps because of a lack of significant differences in
performance between experimental conditions, regressing EEG
spectral power onto performance results produced no meaningful
correlations for either the overall group or either of the
subgroups. Large individual differences in participant
performance likely also contributed to the lack of significant
results.

Discussion

Principal Findings
The objective of this study was to examine the impact of visual,
game-like elements on task performance and cognitive activity

in a visual working memory task. No significant differences in
performance could be determined for both reaction time and
task accuracy. Nevertheless, certain performance trends can be
observed that seem to leave open the possibility that specific
types of visual distractions may affect some aspects of cognitive
performance while leaving others unaffected. For example, our
data show that visually distracting backgrounds had no
observable impact on reaction speed but had a slight impact on
accuracy. Conversely, 3D depth decoding appears to have
slightly affected the speed of processing but not the task
accuracy.

Similarly, the EEG power analysis revealed no significant
differences in the crucial frontal theta rhythm at Fz, which often
serves as a proxy for participant concentration and task
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engagement [41,43]. In contrast, significant differences between
conditions were observed in the beta band and theta band at the
occipital electrode. Although these results return to
insignificance if one corrects for multiple comparisons using
Bonferroni or a similar method, the question nevertheless arises
as to what might have caused these observed effects in the beta
and theta rhythms, particularly given the lack of correlation
with performance. For instance, the higher theta power observed
at Oz was actually accompanied by slightly reduced accuracy
in the background distractor condition. The proximity of Oz to
the occipital area and the visual cortex suggests that rather than
being directly linked with cognitive effort related to the task,
perhaps the theta rhythm is simply more sensitive to certain
underlying ocular processes required by the visually rich
background used in this condition.

For example, although the current experimental task is designed
to prohibit voluntary eye movements by requiring the participant
to continually focus on a center stimulus, the presence and
frequency of involuntary eye movements such as saccades were
unfortunately not recorded as part of the current experimental
design. Indeed, evidence suggests that saccades may be highly
correlated with theta power during periods of memory encoding
[45]. Other studies have similarly observed links between
increased cognitive stress related to memory tasks and elevated
saccadic frequency and duration [46,47]. Thus, the possibility
that the background condition may have elicited a
disproportionate amount of ocular activity and, along with it,
increased theta power represents one hypothesis for the observed
results.

At the same time, increased high-beta (20-28 Hz) spectral power
in the 3D depth condition was accompanied by generally slower
reaction times. Although previous research has implicated beta
rhythm in a variety of assistive roles with regard to visual
perception [48], studies that specifically examine 3D decoding
are less conclusive. For example, although some researchers
found that 3D environments elicited greater cognitive activity
than their 2D counterparts, particularly in the beta range [49],
Dan et al [50] found a reduction in EEG power during the 3D
condition versus the 2D condition in their experiment involving
a learning task [50]. However, the latter study involved complex
reality-like visuals, focused on the Fz theta/Pz alpha ratio for
EEG feature classification rather than a broad-spectrum analysis,
and did not specifically target the beta range. Therefore, the
possibility remains that, as with the theta band, underlying
cognitive demands related to visual processes may have
obscured task-related cognitive activity. As noted earlier, the
cognitive task used incorporates several cognitive processes,
including visual working memory and divided attention. This
multimodality presents a further challenge when trying to
determine the exact reason for unexpected EEG results, as it is
difficult to ascertain the cognitive process responsible for the
observed effects.

The supplementary analysis of performance by participant
ability, although not statistically meaningful, nevertheless
revealed an unexpected trend with regard to task accuracy. The

performance results from the high group appeared to be
cumulatively reduced by successive layers of distractions, with
the game condition eliciting the lowest average accuracy levels.
The poorer performers paradoxically appeared to perform best
during this condition. However, it must be noted that the average
degree of accuracy obtained in the low group was still well
below that of the average overall performance from the high
group.

We offer two hypotheses: throughout the experiment, the
low-performance group may have experienced a form of
performance anxiety that led to generally slower
decision-making and lower overall accuracy. However, the
presence of multiple additional visual elements in the game
condition may have provided a certain degree of reassurance
and encouragement, an effect of gamified design documented
by previous researchers [14,25]. Similarly, the inclusion of a
scoreboard and positive and negative response feedback after
every trial in the game condition may have helped to refocus
participant attention and encourage less experienced or more
easily distracted participants to improve their performance.

Finally, it is worth noting the limitations of the current results.
First, as the context of this study was potential users of
commercial cognitive training products, we used broadly
inclusive criteria for participant selection, which resulted in a
wide range of ages and an uneven gender balance. This may
have affected the results in unexpected ways. Second, although
all experimental conditions differed significantly from the
unmodified task in the high-beta range (except for the game
condition at Fz), they did not differ significantly from each
other. This lack of precision reinforces the possibility that any
visual novelty, whether it is the presence of 3D depth or a
colorful background, triggers an increased cognitive response
in the high-beta range. Greater EEG channel density and
separating the multimodal task into its component cognitive
processes could potentially help isolate and differentiate the
observed responses.

Conclusions
In isolation, a small performance impact was incurred by the
inclusion of a colorful, task-irrelevant background and the use
of 3D depth elements. However, that impact was mitigated or
reversed for some participants when combined with motivating
features such as real-time feedback and scoreboards. Overall,
the primary finding of this study is that performance in simple
memory tasks of the kind that are frequently found in
commercial cognitive training apps is not significantly affected
by the use of visually distracting backgrounds or 3D depth or
by common motivational game elements such as scoreboards
and real-time performance feedback. Particularly in light of the
user engagement and motivational advantages of gamification
documented by previous researchers, the observed impacts may
not be substantial enough to warrant specific design patterns or
the redesigning of existing gamified cognitive tasks unless the
specific goal is to maximize the speed and accuracy, in which
case, the current findings may provide some useful guidance.
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