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Abstract

Background: The number of serious games for cognitive training in aging (SGCTAs) is proliferating in the market and attempting
to combat one of the most feared aspects of aging—cognitive decline. However, the efficacy of many SGCTAs is still questionable.
Even the measures used to validate SGCTAs are up for debate, with most studies using cognitive measures that gauge improvement
in trained tasks, also known as near transfer. This study takes a different approach, testing the efficacy of the
SGCTA—Effectivate—in generating tangible far-transfer improvements in a nontrained task—the Eye tracking of Word
Identification in Noise Under Memory Increased Load (E-WINDMIL)—which tests speech processing in adverse conditions.

Objective: This study aimed to validate the use of a real-time measure of speech processing as a gauge of the far-transfer efficacy
of an SGCTA designed to train executive functions.

Methods: In a randomized controlled trial that included 40 participants, we tested 20 (50%) older adults before and after
self-administering the SGCTA Effectivate training and compared their performance with that of the control group of 20 (50%)
older adults. The E-WINDMIL eye-tracking task was administered to all participants by blinded experimenters in 2 sessions
separated by 2 to 8 weeks.

Results: Specifically, we tested the change between sessions in the efficiency of segregating the spoken target word from its
sound-sharing alternative, as the word unfolds in time. We found that training with the SGCTA Effectivate improved both early
and late speech processing in adverse conditions, with higher discrimination scores in the training group than in the control group

(early processing: F1,38=7.371; P=.01; ηp
2=0.162 and late processing: F1,38=9.003; P=.005; ηp

2=0.192).

Conclusions: This study found the E-WINDMIL measure of speech processing to be a valid gauge for the far-transfer effects
of executive function training. As the SGCTA Effectivate does not train any auditory task or language processing, our results
provide preliminary support for the ability of Effectivate to create a generalized cognitive improvement. Given the crucial role
of speech processing in healthy and successful aging, we encourage researchers and developers to use speech processing measures,
the E-WINDMIL in particular, to gauge the efficacy of SGCTAs. We advocate for increased industry-wide adoption of far-transfer
metrics to gauge SGCTAs.
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Introduction

Background
The age distribution of the world’s population is projected to
dramatically shift over the next few decades as improved health
care continues to extend life expectancy [1]. By 2050, more
than one-fourth (27%) of the European population is expected
to be aged >65 years. Although medicine can prolong relative
physical health [2], offsetting age-related changes in cognitive
health is growing in importance [3]. Although recent literature
suggests that cognitive measures may inflate age-related
decreases in performance [4-6] and disregard an increase in
crystallized intelligence (eg, general knowledge and vocabulary
[7]), a decrease in cognitive performance is one of the most
feared aspects of aging [8]. Consequently, there is growing
pressure to prolong active and healthy aging—successful aging
[9]—by targeting age-related changes in cognitive abilities such
as memory and executive functions (EFs; eg, inhibition and
working memory [WM]) [10,11].

Numerous serious games for cognitive training in aging
(SGCTAs) are being developed to mediate age-related cognitive
changes. However, there is much debate in the literature
regarding their efficacy. In fact, in 2014, a total of 2 teams of
researchers published contradictory open letters. The first letter
by a group of 70 scientists refuted the efficacy of such training
[12]. The second letter by another group of 133 scientists
claimed the opposite, supporting the benefit of cognitive training
[13]. These letters were followed by an extensive review [14]
suggesting that SGCTAs, in general, can improve performance
on the trained game and associated activities—near transfer.
However, the review cautions that there is insufficient evidence
to suggest that these changes can generalize to activities that
are not directly associated with the game—far transfer. As
cognitive training games and interventions are a “means to
enhance performance on other tasks” [14], it seems critical to
measure their effects using far-transfer measures that gauge
daily activities. Such far-transfer measures would gauge
cognitive abilities through performance on a different task that
is mediated by the trained cognitive functions.

Effective communication and speech perception play an
extensive role in many daily activities and have evident effects
on general health and well-being [15]. Difficulty in
understanding speech in adverse conditions (eg, noisy
background or while conducting another task) forms one of the
most prevalent complaints among older adults [16]. These
difficulties decrease the participation of older adults in social
and professional interactions, thus limiting their independence
and increasing feelings of loneliness. Growing evidence suggests
that a decrease in speech processing, in turn, has a negative
effect on mental health, general well-being, and even longevity
[17-21]. The social restrictions imposed by the COVID-19
pandemic further limit interactions and other opportunities for
cognitive exercise (eg, work and volunteering). Indeed, current

restrictions have been found to increase loneliness and
depression in older age [22], even after vaccinations were made
available [23] and severe social restrictions were lifted [24].
These, together with limited access to health care services as a
result of the pandemic [25,26], illustrate the necessity to create
effective SGCTAs that can directly affect spoken
communication in adverse conditions, even while social
distancing. We suggest that testing speech processing as a
far-transfer task could demonstrate the impact of training with
SGCTAs, on the daily lives of older adults.

In this exploratory study, we used an eye-tracking paradigm to
assess whether training EFs with the SGCTA Effectivate
generalizes to improved speech processing in adverse listening
conditions for older adults. This will serve to validate a real-time
measure of speech perception—Eye tracking of Word
Identification in Noise Under Memory Increased Load
(E-WINDMIL)—as a gauge of far-transfer efficacy of SGCTAs
designed to train EFs and provide a case study for developers
and academics on the use of far-transfer metrics.

EFs and Speech Processing
Many SGCTA developers are targeting EFs because of their
prominent role in healthy cognitive aging (refer to the seminal
work by Salthouse [27,28]). EFs, which include WM and
inhibition, enable active maintenance and manipulation of
bottom-up information with top-down information in memory,
especially during the performance of a concurrent task [29-31].
The literature suggests that individuals with better EFs are able
to hold more incoming information and incorporate and
manipulate it more easily, even under adverse conditions such
as distractions (ie, external noise) and memory preload (ie,
remembering the context of a conversation [32,33]). Therefore,
it is not surprising that EFs play a significant role in speech
processing [34].

Consider a scenario in which an older adult is driving his
grandson in a car and radio music is playing. The grandson says,
“grandpa, have you seen the DOLL?” The older listener must
perform the following tasks:

1. Segregate the spoken message from the background radio
noise (task-irrelevant) stream as it unfolds in time

2. Inhibit the activation of competing (similar-sounding) words
in the mental lexicon (eg, DO/ sounds in words such as
DOG) while increasing the activation of the word DOLL,
as the sound L unfolds in time

3. Allocate enough resources for the activities mentioned
previously from a limited cognitive resource pool that is
already depleted by the concurrent task of driving

As mentioned previously, EFs, especially WM, are essential to
perform this complex task and have been shown to be affected
by aging in the following ways: (1) stream segregation slows
with aging, (2) decrease in the efficiency of inhibition impairs
the ability to reject incorrect lexical candidates, (3) decrease in
cognitive resources can impair speech perception, and (4)
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age-related hearing loss distorts the perception of bottom-up
signals.

First, stream segregation slows with aging [35]. Reduced WM
capacity has been linked to limitations in inhibition [36]. This
affects the ability to separate relevant speech from irrelevant
background noise. For example, in a study by Janse [37], when
speech was presented in background noise, poor inhibitory
abilities led to greater interference by the competing noise,
which impaired speech perception in older adults.

Second, an age-related decrease in the efficiency of inhibition
[15,38] impairs the ability to reject incorrect lexical candidates
as the context unfolds in time [39,40].

Third, age-related decreases in cognitive resources, specifically
in EFs and WM [38], can impair speech perception, as suggested
by the Framework for Understanding Effortful Listening [41].
The Framework for Understanding Effortful Listening is an
adaptation of the capacity model of attention by Nobel laureate
Daniel Kahneman, which conceptualizes the relationship
between mental resource capacity and cognitive demands.
According to this model, mental resources have limited capacity.
The presence of background noise or another
resource-consuming task (eg, driving) can impede and slow
down speech processing for people with lower resource
capacities.

Finally, age-related hearing loss distorts the perception of
bottom-up signals, providing impoverished input to the central
nervous system. To mitigate these effects, older adults rely
heavily on the linguistic context in word recognition, often to
an even greater degree than younger adults [34,42,43]. Efficient
context processing depends on WM capacity and information
processing speed [44]. As mentioned previously, these
capabilities decline with age [28,45] and can affect older adults’
ability to use context during word recognition. Depleted WM
capacity can also affect the ability to temporarily remember
words from a given linguistic context for later use [46].

In summary, cognitive performance is intertwined with speech
perception, especially in older age. Age-related difficulties in
speech perception are not only affected by reduced cognitive
abilities but can also accelerate the rate of cognitive decline. A
total of 2 Lancet reports [15,47] on dementia prevention
highlighted improving auditory and speech accessibility as the
number one modifiable risk factor in middle to late life. In fact,
the relative weight of speech accessibility in preventing
dementia is estimated to be higher than in tackling smoking,
diabetes, hypertension, and obesity altogether. As Lin [48]
suggests in his Aging and Cognitive Health Evaluation in
Eldersmodel [49], degraded speech processing affects cognitive
resilience in aging by decreasing physical activities, social
interactions, communication, and related brain functions. Hence,
it is plausible to assume that training EFs should enable
participants to juggle informational weight more gracefully and
process speech faster, in turn, improving their quality of life
and well-being.

Speech as a Far-Transfer Measure of Cognitive
Training Using Eye Tracking
To test the effect of cognitive training on speech processing,
this study used eye tracking. We used a noninvasive infrared
light source and high-precision camera that collects reflections
from the eye and records the exact location of the eye gaze on
the display at a rate of 500 samples per second. As the word
unfolds in time, eye gaze data are time locked with what is being
heard by the listener. By recording the participant’s eye
movements in relation to the visual display and auditory stimuli,
eye tracking provides a highly sensitive and continuous measure
of spoken word processing. Unlike overt non–real-time
responses (participant verbally or physically responding after
the word has been heard), the covert rapidity of an eye
movement allows one to determine the point in time at which
the listener is able to isolate the target word from its competitors
through the difference in fixations on the target and competitor
over time. Although non–real-time responses, such as pointing
at the screen, may be affected by age-related motor slowing,
covert eye movement speed and accuracy are relatively
unaffected [50].

To specifically gauge the cognitive mechanisms involved in
speech processing under adverse conditions, our laboratory
adapted the Visual World eye-tracking paradigm [51] to include
a concurrent task (increasing memory load) and noise
(increasing distractions), creating the E-WINDMIL [44]. In
E-WINDMIL, listeners hear Hebrew sentences such as “point
at the box” while viewing a visual display on a computer screen
that contains 4 objects. In this example (Figure 1), the display
shows a picture of the named object heard by the participant,
box /ar.gaz/, along with three other objects: a phonological
competitor (eg, an onset competitor that shares the first syllable
with the target, rabbit /ar.nav/) and 2 additional objects that are
neither semantically nor phonologically related to the heard
target object or its name. Participants are asked to touch the
picture of the object as quickly and accurately as possible while
their eye gaze is recorded. Rather than analyzing the slower
overt touch response, only the eye gaze is taken into account in
later analysis.

As real-life speech processing is often accompanied by other
tasks, before the onset of the spoken instructions, participants
are also asked to retain in memory either 1 or 4 digits (low or
high memory load, respectively) for later recall. A
discrimination score, which is the difference between the
proportion of eye gaze fixations to the target (image representing
the heard word) and the phonological competitor, was used to
assess the 2 groups. The higher the difference, the more efficient
the listener is in discriminating the spoken target from its
signal-sharing competitor. Using the same eye-tracking
paradigm, Nitsan et al [52,53] showed that listeners with larger
WM capacity were able to identify the target word (and reject
the signal-sharing competitor) earlier than a matched group with
lower capacity. These findings suggest that improving one’s
cognitive capacity might improve speech processing in adverse
conditions.
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Figure 1. An example of the experimental display. The target word in this example, /ar.nav/ (rabbit), is represented in the bottom-left corner. The
phonological competitor, /ar.gaz/ (box), is represented in the bottom-right corner. The words /si.ra/ and /max.∫ev/ (boat and computer, respectively) are
unrelated distractor.

This Study
A total of 2 groups of older adults were tested twice on the
E-WINDMIL speech processing task. One group received no
cognitive training, whereas the other group followed the
Effectivate SGCTA training protocol for 6 weeks. We aimed to
test whether a short training period using Effectivate would
engender a significant far-transfer change in speech processing
ability. As the tested SGCTA does not involve any type of
auditory training, improved performance on the E-WINDMIL
speech processing task would provide strong support for the
far-transfer effect and demonstrate the use of far-transfer
measures in gauging training success for the validation of
SGCTAs.

We hypothesized that if the tested SGCTA, Effectivate, improves
generalized EFs, speech processing in adverse conditions, as
measured by performance on the E-WINDMIL, would improve
for the training group. Specifically, the difference in
discrimination scores between the training group and control
group would not be significant in the first test session, although
an advantage for the training group would be found in the second
test session (after training). This would suggest that training
had a significant impact on real-time speech processing, above
and beyond practice with the E-WINDMIL task.

Methods

Participants
A total of 54 older adults were recruited via phone calls from
the Reichman University’s older adult research volunteer group
and randomly assigned to either the cognitive training or control
group. Although the groups cannot be said to reflect the diversity
of the global older adult population, they are representative of
the population residing in central Israel, where the study was
conducted. Of these 54 individuals, 8 (15%) did not return for
the second eye-tracking session, and 6 (11%) were excluded
because of failure in eye movement recording or loss of
eye-tracking signal. Recruitment was continuous for the duration
of 6 months. Owing to the COVID-19 pandemic, participant
recruitment and data collection were limited and terminated
earlier than expected. The training group comprised 50% (20/40)
of older adults (mean age 65.65, SD 4.8 years; 14/20, 70% were
women). The control group comprised 50% (20/40) of older
adults (mean age 69.05, SD 3.8 years; 13/20, 65% were women)
from the study by Baharav et al [54]. All participants met the
research inclusion criteria (refer to Textbox 1 for details). As
shown in Table 1, the 2 groups had similar gender distribution
(P=.74). Hearing acuity (pure tone average), years of education,
and forward digit span scores did not differ significantly between
the 2 groups (P=.51, P=.74, and P=.76, respectively). However,
participants in the training group were slightly younger
(t38=2.48; P=.02). All the participants provided written informed
consent.
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Textbox 1. Inclusion criteria for participant recruitment.

Language background

High proficiency Hebrew speakers (no early bilinguals were included), assessed by a self-report and a score within the normal range in the Wechsler
Adult Intelligence Scale–3 Hebrew vocabulary subtest

Hearing

Symmetrical air conduction hearing thresholds, expressed as pure tone averages of ≤25 dB hearing level in each ear (0.5 kHz, 1 kHz, and 2 kHz), and
no reported history of auditory pathology

Vision

Normal or corrected to normal visual acuity and color vision, assessed by the Landolt C charts and the Ishihara charts

Cognition: working memory

Clinically normal scores for their age range on the Montreal Cognitive Assessment cognitive screening test and on the forward and backward digit
span subtests (Hebrew version of Wechsler Adult Intelligence Scale–3 [46])

Table 1. Demographic characteristics (N=40).

Group comparisonControl group (n=20)Training group (n=20)Characteristics

P valueChi-square (df)t testa (df)

.02N/Ab2.478 (38)69.041 (3.605)65.65 (4.848)Age (years), mean (SD)

.740.4 (1)N/A13 (65)14 (70)Gender (women), n (%)

.51N/A0.672 (37)17.85 (4.913)16.79 (4.939)Hearing (across 0.5 kHz, 1 kHz, and 2 kHz), mean (SD)

.74N/A0.339 (34)16.18 (2.69)16.42 (2.244)Education (years), mean (SD)

.76N/A0.309 (38)9.75 (1.333)9.9 (1.714)Digit span, mean (SD)

aThe t test was 2-tailed.
bN/A: not applicable.

Ethics Approval
Ethics approval for this study was obtained from the Reichman
University (Interdisciplinary Center Herzliya) institutional
review board (P_1920119). This study was conducted in line
with the CONSORT-EHEALTH (Consolidated Standards of
Reporting Trials of Electronic and Mobile Health Applications
and Online Telehealth) checklist (Multimedia Appendix 1).

Stimuli

Auditory Stimuli
Auditory stimuli were taken from the study by Nitsan et al
[52,53] and contained both the object names describing the
visual stimuli and the sentence, “point at the ___ [target word]”
in Hebrew using a plural non–gender-specific form. All object
names were disyllabic. The average target word duration,
including the Hebrew definition article ha- (the), was 1078 (SD
91) milliseconds. The root mean square intensity was equated
across all recorded sentences. Files were mixed with a
continuous speech spectrum noise at a fixed 0 dB signal-to-noise
ratio based on values for the discrimination timeline in the study
by Ben-David et al [55]. Stimuli were presented binaurally at
50 dB above the individual pure tone average via a MAICO
MA-51 (MAICO) audiometer using TDH 39 supra-aural
headphones (Telephonics).

Visual Display
In each trial, the participants were presented with a 3×3 grid
with 4 images of objects positioned at the grid corners (Figure
1). The stimuli (images) were previously used in the studies by
Hadar et al [56] and Nitsan et al [52,53] and were confirmed to
be clearly identifiable and highly familiar. In all the trials, 1 of
the 4 image names corresponded with the spoken target word.
In critical trials, a second image name was a phonological
competitor: sharing the initial syllable (onset overlap) or the
final syllable (offset overlap) with the spoken target word. The
remaining 2 objects presented on the screen were phonologically
and semantically unrelated to both the target word and
phonological competitor. In addition to critical trials, filler trials
were used to diminish participant expectation of onset phonetic
resemblance between the depicted object names. In filler trials,
all 3 distractors were phonologically and semantically unrelated
to the target word.

The original image database was divided into two to create 2
image sets, which were counterbalanced between participants
for testing sessions 1 and 2. Within each testing session, objects
were presented twice: once as a critical trial and once as a filler
trial in which one of the 2 phonetically unrelated items was
used as the target word. To prevent implicit spatial learning
within a single testing session, object positions on the screen
were rotated at each presentation.
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Procedure

Overview
The study comprised 2 experimental sessions, all conducted
individually in a dedicated experimental laboratory complex at
the Reichman University. In the first session, participants signed
an informed consent form, and the inclusion criteria measures
were collected. The E-WINDMIL paradigm was administered
(as presented in the following section) to determine the
participants’ baseline performance. To maintain experimenter
blindness to the conditions, 2 different research assistants
conducted the experiment. One research assistant conducted
the E-WINDMIL and auditory testing, and the other research
assistant assigned participants to each group and presented the
participants in the training group with a web address providing
access to the Effectivate SGCTA and instructed them to train
at least three times a week for a duration of 5 weeks, after which
they returned for the second experimental session. They were
called once a week to verify Effectivate training. In the control
group, participants were asked to maintain their daily routine
and return within 2 to 4 weeks. In the second session, the same
E-WINDMIL task was administered and the participants were
debriefed. All participants were aware of the academic affiliation
of the researchers. Participants in the experimental condition
were not blinded to the name of the SGCTA company; however,
the product was still in the beta stages and, as such, was not
publicly available or marketed at the time.

E-WINDMIL Paradigm
The experiment was administered individually in a dedicated
sound-attenuated booth (IAC Acoustics). Participants were
seated 60 cm away from the computer screen, with their heads
placed on the designated eye-tracker chin rest to minimize head
movement. Each participant’s dominant eye was calibrated to
ensure that their real-time eye gaze position was recorded
throughout the course of the trial. A table-mounted SR Eyelink
1000 eye tracker (SR Research Ltd) in the tower mount
configuration was used. Eye gaze position was recorded using
the Eyelink software at a rate of 500 Hz.

Trials began with a visual cue of a black play triangle centered
on the screen, immediately followed by the auditory presentation
of either 1-digit preload (low-load condition) or 4-digit preload
(high-load condition) through headphones. Participants were
told to memorize these digits (in the order presented) for later
recall. Subsequently, a 3×3 grid with the 4 images appeared
(Figure 1). Participants were given 2 seconds to view the object
positions, after which a fixation cross appeared in the center of
the screen. Once the participants pressed the fixation cross to
initiate the trial, the instruction sentence, “point at the ___ [target
word],” was presented via the headphones. Selection of a named

object was indicated by touching the object’s picture on the
touch screen. Following the participant’s selection of a stimulus,
a visual feedback signal appeared in the square of the selected
image: red highlight for an incorrect answer or green highlight
for a correct answer. Finally, the visual display was cleared,
and a visual cue of a black circle appeared on the screen,
signaling participants to recall aloud the digit preload from the
beginning of the trial. Then, the experimenter coded the response
(either correct or incorrect) in real time. Participants were
instructed that the speed and accuracy of both the object
selection and digit recall were equally important.

In a given testing session, participants completed 68 trials, split
into 2 trial blocks for each digit preload condition (low load: 1
digit; high load: 4 digits). Each condition contained 34 trials,
of which 2 (6%) were practice trials, and 32 (94%) were
experimental trials. The 32 trials in each condition were split
such that 16 (50%) were filler trials, indicating that the target
object’s name did not share any phonology with the surrounding
objects, and 16 (50%) were critical trials, indicating that the
target object’s name shared phonology with a surrounding object
name. 50% (8/16) were phonological onset competitors (eg,
/ar.nav/-/ar.gaz/), and 50% (8/16) were phonological offset
competitors (eg, /xalon/-/balon/).

Although participants in the experimental group were aware of
the intervention, the Visual World covert eye-tracking design
was found to account for participants trying to outperform in
an overt choice of the target (eg, with a button press). In other
words, participants cannot control eye gaze fixations toward
the alternatives versus fixations toward the target once saccades
have been initiated. Indeed, in the visual world paradigm, eye
movements were affected by implicit task goals and relatively
immune to intentions and social desirability [57-59].

SGCTA Effectivate
Following baseline testing, participants in the training group
completed at-home web-based training, using a PC or tablet. A
minimum of 15 training sessions were completed with
approximately 8 minutes of active training per session (range
3-15 minutes). Each training session comprised 2 to 10
exercises, which were selected from a bank of 10 tasks. The
difficulty level was individually adjusted for each participant
and calibrated separately for each task using various measures
(eg, exposure time, reaction time window, and number of
objects). Each training task targeted at least one of the following
cognitive functions: processing speed, WM, executive control,
attentional control, sustained attention, spatial attention, binding,
semantic memory, and training of several mnemonic methods.
Figure 2 presents an example of such an exercise.
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Figure 2. An example of a slide from the Effectivate serious game for cognitive training in aging—the exercise, The Last One Counts, is based on the
‘n-back’ task. In this exercise, the users were presented with a sequence of shapes and asked to decide whether each shape is identical to the one
previously presented. Task difficulty changed gradually by updating different parameters, such as exposure latencies. In advanced levels, users were
asked to decide whether the current shape is the same as, different from, or partially similar to the previously presented one. This additional level of
complexity requires users to segregate the item’s different features (ie, color and shape) to selectively focus on some and inhibit others.

Results

Response Accuracy
Table 2 presents the accuracy percentage for each experimental
condition—the percentage of trials in which participants both
correctly selected the corresponding object on the visual display

(indicating correct spoken word recognition) and correctly
recalled the preload digits (indicating correct digit recall). A
Mann-Whitney independent-sample nonparametric test
confirmed that WM load, test session, and participant group did
not have significant effects on accuracy, with P>.17 for all 4
tests.

Table 2. Mean percentage (and SDs) of trials in which the target word was correctly selected and digits were correctly recalleda.

Second session (%), mean (SD)First session (%), mean (SD)Participant group and WMb load

Training

98.1 (4.6)99.4 (2.8)Low

88.1 (15.4)91.2 (14.1)High

Control

99.4 (4.6)98.9 (3.7)Low

92.6 (10.7)87.5 (13.4)High

aLow working memory and high working memory indicate the two preload conditions, 1 digit and 4 digits, respectively.
bWM: working memory.

Eye Gaze Analysis
We analyzed target discrimination scores (following the
methodology of previous studies [60-63]) reflecting the listeners’
ability to discriminate the target word from its phonological
competitor. The proportion of fixations on the competitor was
subtracted from the proportion of fixations on the target within
250-millisecond time bins, starting from 250 milliseconds after
the word onset to 1500 milliseconds. In this measure, the higher
the value, the better listeners can discriminate the target from
its competitor; values approaching 0 reflect an inability to
discriminate between the target and competitor objects.
Mixed-design repeated-measures ANOVAs were conducted for
each 250-millisecond time bin, with three within-participants
factors—WM load (high and low), test session (first and

second), and condition (onset vs offset sound sharing)—and
one between-participant factor—participant group (training and
control). In each analysis, planned comparisons compared the
effect of the participant group on discrimination scores in the
first and second test sessions to verify whether differences
between groups were related to the intervention (ie, significant
effect only in the second session). Significant interactions of
the test session with the participant group were noted in two of
the five tested time bins: early processing 250 to 500
milliseconds and late processing 1250 to 1500 milliseconds, as
discussed in the following section (Figures 3 and 4). The
remaining three time bins (500-750 milliseconds, 750-1000
milliseconds, and 1000-1250 milliseconds) did not show any
significant interaction; thus, they will not be discussed further.
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Figure 3. First test session. Mean target discrimination scores (with SE bars) for the training and control groups. Target discrimination scores are the
proportion of fixations on the competitor subtracted from the proportion of fixations on the target within 250-millisecond time bins, starting from 250
milliseconds after the word onset to 1500 milliseconds.

Figure 4. Second test session. Mean target discrimination scores (with SE bars) for the training and control groups. Target discrimination scores are
the proportion of fixations on the competitor subtracted from the proportion of fixations on the target within 250-millisecond time bins, starting from
250 milliseconds after the word onset to 1500 milliseconds. *Significant effect.

Early Processing: 250- to 500-Millisecond Time Bin
The interaction between the test session and the participant
group was found to be approaching significance (F1,38=3.881;

P=.06; ηp
2=0.093). Planned comparison indicated no significant

difference between the 2 groups in the first session (F1,38=0.056;
P=.81), whereas the second session produced higher
discrimination scores in the training group (F1,38=7.371; P=.01;

ηp
2=0.162). This suggests that improved performance can be

related to the intervention itself. The effect of the participant
group was marginally significant (F1,38=3.048; P=.07;

ηp
2=0.085), with slightly higher discrimination scores in the

training group (as in the previous analysis, this difference can
be related to the second session) and no significant main effect
for test session (F1,38=0.224; P=.64). No significant triple
interactions were found for the participant group, test session,
or any other tested variables (WM load or condition).
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Late Processing: 1250- to 1500-Millisecond Time Bin
A significant interaction between the test session and the

participant group was found (F1,38=4.220; P<.05; ηp
2=0.100).

Planned comparisons indicated that although the 2 groups did
not significantly differ in the first session (F1,38=1.689; P=.20),
the second session showed higher discrimination scores in the
training group than in the control group (F1,38=9.003; P=.005;

ηp
2=0.192), suggesting that improved performance could be

related to the intervention itself. A significant main effect of

the participant group was noted (F1,38=6.722; P=.01; ηp
2=0.150),

with higher discrimination scores in the training group
(emanating from higher scores in the second session) and no
significant main effect for the test session (F1,38=0.108; P=.74).
No significant triple interactions were found for the participant
group, test session, or any other tested variables (WM load or
condition).

In summary, in early and late processing (250-500 milliseconds
and 1250-1500 milliseconds after word onset, respectively),
performance did not differ between the 2 groups in the first test
session. However, in the second test session after training with
the Effectivate SGCTA, the training group surpassed the control
group. These effects can be taken to suggest that the SGCTA
training improved performance, over and above any effect of
test-retest repetition.

Discussion

Principal Findings
In this exploratory study, we aimed to validate an eye-tracking
paradigm, the E-WINDMIL, which tests real-time speech
processing in adverse conditions as a gauge for the far-transfer
efficacy of SGCTAs. Specifically, we tested whether training
EFs in the visual modality with the SGCTA Effectivate
generalizes to improved speech processing in adverse listening
conditions (auditory modality) for older adults.

The training group, with 50% (20/40) of the older adults, was
tested before and after 6 weeks of training on the SGCTA
Effectivate. The control group, with another 50% (20/40) of the
older adults, did not undergo any specific cognitive training.
Before training, no significant differences in E-WINDMIL
performance were noted between the control group and the
training group. However, after training with Effectivate, the
training group outperformed the control group in early word
processing (indicated by eye movements, 250-500 milliseconds
after word onset) and late word processing (1250-1500
milliseconds after word onset). The early processing advantage
may suggest improved stream segregation between the spoken
target word and noise [52,53], when WM was otherwise
occupied. The late processing advantage alludes to improved
decision-making processes (ie, using accumulated evidence)
once the word had been completely heard [55]. Our results
provide early support for the efficacy of the E-WINDMIL
speech processing paradigm as a far-transfer measure of
cognitive training with the SGCTA Effectivate. This is of special
interest as the tested SGCTA did not train any auditory task or
spoken language processing.

Speech Processing as a Far-Transfer Gauge for
Cognitive Training
Challenges in determining the effectiveness of any cognitive
intervention stem from the ongoing debate: Do we use
near-transfer or far-transfer metrics? [14] In other words, is it
sufficient to indicate improved performance on the trained task
or should research indicate improved performance on a daily
task, far from training, to suggest the generalizability of
training? This exploratory study demonstrates the efficacy of
using a far-transfer measure that involves speech processing in
adverse conditions to discern the impact EF training has on
daily life activities.

Speech processing in adverse conditions presents an excellent
gauge of the generalizability of cognitive training. As speech
processing is resource demanding, the fewer resources listeners
have, the more they will be affected by adverse conditions such
as background noise. Speech processing involves holding
ongoing speech strings in memory and integrating words and
phrases to create coherent meaning; thus, it is considered to be
dependent on WM and other attentional resources [52,56]. The
results of this study suggest the prowess of training to create a
generalized cognitive effect, as a few weeks of training on the
Effectivate SGCTA was sufficient to improve speech processing
in adverse conditions (above and beyond test-retest learning
effects).

This improvement can be interpreted in light of the crucial role
of EFs, especially WM, in speech processing in adverse
conditions. According to the Ease of Language Understanding
model [44], explicit WM resources are drawn from a central
pool to compensate for the loss of automatic matching between
the input and lexical representations when the sound input is
degraded by adverse listening conditions. Other studies have
demonstrated a direct link between WM capacity and the ability
to inhibit irrelevant information. This ability is necessary to
separate the speech signal from background noise and reject
competing words in the mental lexicon. Thus, our results suggest
that training EFs using SGCTAs might have a generalized effect
on real-life daily tasks. Returning to our example in the
introduction, with improved WM capacity, the older adult will
be better able to understand his grandson saying, “Grandpa,
have you seen the DOLL?” rather than DOG (sound-sharing
alternative) while driving a car (WM load) with the radio playing
(adverse listening conditions) in the following ways:

1. Improve speech segregation—separating the spoken
message from the background task-irrelevant noise (eg,
radio and engine noise)

2. Effectively inhibit the activation of competing
similar-sounding words in the mental lexicon (eg, DOG)

3. Allocate enough resources to use context and information
in long and short memory from a cognitive resource pool,
which is already depleted by the concurrent task of driving

Given the pivotal role of speech processing in successful aging
[64], this change may have a lasting positive impact on the
quality of life in older age.
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E-WINDMIL as a Far-Transfer Gauge for Cognitive
Training
The advantage of using the adapted visual world paradigm
E-WINDMIL lies in its increased ecological
validity—measuring a daily task (speech processing) that is
important to the perseverance of well-being and performance
in older age [17-19]. Eye tracking used by E-WINDMIL is
better suited to test older adults’ speech processing than more
traditional speech tests involving overt responses, such as verbal
or keypress response. It is not influenced by an age-related
slowing of motor speed, which often affects non–real-time
speech tests [65]. Unlike many other speech processing tasks
that assess the processing of a single word in ideal listening
conditions, the E-WINDMIL asks listeners to retain digits for
later recall (a task designed to weigh on WM resources) while
presenting speech in noise. In this way, the E-WINDMIL
paradigm acknowledges that speech in real-life scenarios is
often experienced along with noise while the listener is engaged
in other cognitively demanding tasks (eg, following the context
of the sentence as it unfolds and driving). Moreover, eye
tracking has been shown to be a sensitive measure for speech
processing in various studies, suggesting that speech processing
is costly in terms of WM processing and perhaps even mediated
by it [29,34,56,66,67].

Training-Related Advantage in the 1250- to
1500-Millisecond Time Bin
Previous adaptations of E-WINDMIL found eye tracking to be
very sensitive to differences in cognitive reserve. Hadar et al
[56] found that minimizing available cognitive resources can
slow down processing in this task. Nitsan et al [52,53] found
that individuals with higher cognitive reserve outperform
individuals with lower reserve while using E-WINDMIL. This
advantage, attributed by the authors to the use of cognitive
resources for speech processing, was indicated in the later time
bins—similar to the current findings. Other studies also found
that differences in cognition were indicated in later word
processing with older listeners in particular [61,68]. A recent
study by Harel-Arbeli et al [46] attributed the advantages seen
in later time bins to decision-making processes. In their study,
using a similar eye-tracking paradigm, the spoken target word
was preceded by a spoken predictive context presented in a
quiet environment. An advantage of young adults over older
adults, based on the age-related difference in cognitive
resources, was present mainly in the late time bin when the full
word had been spoken. Taken together, it appears that improved
processing in the late time bin may reflect improved cognitive
resources (eg, WM and inhibition).

Training-Related Advantage in the 250- to
500-Millisecond Time Bin
The current data also indicated training-related advantages in
processing during early time bins, when only the first phoneme
of the word is being processed. This suggests that cognitive
training improved target word stream formation and auditory
stream segregation between the target word and noise [55,69].
Indeed, this early process of stream segregation has been linked
not only to sensory processes but also to the deployment of
cognitive resources. Cognition is necessary for the inhibition

of the noise stream and selective focus on the target word
stream, leading to stream segregation [70,71]. Stream
segregation is essential for speech processing and represents
one of the major hurdles for older adults in social interactions
[72]. Indeed, age-related auditory sensory degradation can
specifically impair processes related to stream segregation in
aging [73]. This early time bin training advantage may also be
related to the early benefits noted in the literature as a result of
removing background noise [60] and increasing the lexical
frequency of the spoken word [74] using similar eye-tracking
paradigms. In summary, the performance advantage in the early
time bin associated with SGCTA training may reflect an increase
in cognitive reserve.

Caveats and Future Studies
This study should be taken as a first step in supporting the
effectiveness of the tested SGCTA, and it does not serve as a
recommendation or suggestion to use SGCTAs in general or
specifically the Effectivate SGCTA. This study was ongoing at
the beginning of the COVID-19 pandemic and was halted
because of national quarantine. Therefore, we were unable to
amass a larger group of participants. Moreover, we were unable
to recruit an active control group to undergo an alternative form
of cognitive training. Future studies should attempt to replicate
the results with an active control to ensure that the observed
effects were not related to possible social desirability or lack of
participant blinding but to the specific cognitive training,
Effectivate. However, we note that the experimenters
administering the study were blinded to the condition, and the
experimental tool was relatively immune to social desirability.
Such replications should also more carefully match participants
across all groups. Indeed, on average, participants in the control
group were older by a few years than those in the training group.
We also note that participants in this study did not form a
representative sample of the older adult population, specifically
given the cognitive and linguistic inclusion criteria. Although
future studies should aim to include more diverse samples, these
criteria are common in research with this population [75-77].

We demonstrated that the Effectivate SGCTA is sufficiently
powerful to induce changes, even in cognitively healthy older
adults, and that the E-WINDMIL test is sufficiently sensitive
to detect such changes. Our preliminary results are the first step,
suggesting the ability of the SGCTA Effectivate to engender
far cognitive transfer. Future studies should also try to relate
our results to other more traditional cognitive measures and
questionnaires tapping users’ subjective evaluation of their
quality of life.

Summary and Implications
This exploratory study presents an early foray into the potential
of speech processing in adverse conditions as a far-transfer
gauge of SGCTAs. This is in line with previous studies that
used gamification in cognitive decline research [78-81]. Results
present a preliminary indicator of the SGCTA Effectivate’s
potential to engender such far transfer from visual cognitive
training to auditory speech processing after only a few weeks
of training. Following training, older adults were better able to
differentiate between the spoken target word and its
sound-sharing competitor under adverse conditions (noise and
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digit memorization). We suggest that this change in performance
represents a real-world improvement in a daily task that is
directly related to successful aging. Thus, it shows the potential
of the training to have a significant impact on the user’s daily
life. We advocate that cognitive training should showcase
evidence-based improvement in daily far-transfer tasks that can
change the user’s quality of life, as opposed to merely showing
changes in traditional pen-and-paper cognitive measures. As
serious games are a means of improving performance in other
tasks, games developed to the highest standards should seek
out far-transfer validation methods. We hope that the increased
demand for far-transfer metrics will bolster research efforts
within the academic community to develop new far-transfer
gauges of cognitive ability and call on serious game developers
to adopt far-transfer metrics, such as E-WINDMIL, into their
gauges for validity and success.

This study investigated aging through the lens of speech
processing, a novel vantage point, which can illuminate
interconnected attentional mechanisms known to be affected
by aging. Most importantly, speech processing is an essential
daily task performed across social interactions, leisure, and
employment [72]. Impaired speech processing may have severe
implications for older adults across all aspects of life. Therefore,
we encourage adding tests of speech processing, especially in

adverse conditions, to the arsenal of tools used to test the
efficacy of EF training in aging. Furthermore, we suggest paying
attention to speech processing in aging when considering
accessibility and inclusion in serious game design.

In addition to being a novel and important test metric for aging,
real-time speech processing metrics may also prove beneficial
to testing other populations such as children with the
neurodevelopmental disorder, attention-deficit/hyperactivity
disorder (ADHD). As the most prevalent neurodevelopmental
disorder in children, ADHD is associated with lifelong
impairment, with symptoms reflecting a deficit in EFs such as
inhibitory control, attentional regulation, and WM [82,83].
Given ADHD’s high prevalence and detrimental effect on the
quality of life and well-being, many serious games are being
developed to train EFs in ADHD. As is the case with SGCTAs,
there is much debate in the literature regarding their efficacy
[84]. Expanding on our findings, we suggest further exploration
using E-WINDMIL to test the far-transfer efficacy of serious
computerized games designed for children and adults with
ADHD along with other promising populations that could
benefit. We hope that the creation and use of universally
accepted far-transfer metrics will determine gold standard
serious games that will help us prolong cognitive functions and
improve well-being with age and throughout life.
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