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Abstract

Background: Artificial intelligence (AI)–driven serious games have been used in health care to offer a customizable and
immersive experience. Summarizing the features of the current AI-driven serious games is very important to explore how they
have been developed and used and their current state to plan on how to leverage them in the current and future health care needs.

Objective: This study aimed to explore the features of AI-driven serious games in health care as reported by previous research.

Methods: We conducted a scoping review to achieve the abovementioned objective. The most popular databases in the information
technology and health fields (ie, MEDLINE, PsycInfo, Embase, CINAHL, IEEE Xplore, ACM Digital Library, and Google
Scholar) were searched using keywords related to serious games and AI. Two reviewers independently performed the study
selection process. Three reviewers independently extracted data from the included studies. A narrative approach was used for
data synthesis.

Results: The search process returned 1470 records. Of these 1470 records, 46 (31.29%) met all eligibility criteria. A total of 64
different serious games were found in the included studies. Motor impairment was the most common health condition targeted
by these serious games. Serious games were used for rehabilitation in most of the studies. The most common genres of serious
games were role-playing games, puzzle games, and platform games. Unity was the most prominent game engine used to develop
serious games. PCs were the most common platform used to play serious games. The most common algorithm used in the included
studies was support vector machine. The most common purposes of AI were the detection of disease and the evaluation of user
performance. The size of the data set ranged from 36 to 795,600. The most common validation techniques used in the included
studies were k-fold cross-validation and training-test split validation. Accuracy was the most commonly used metric for evaluating
the performance of AI models.

Conclusions: The last decade witnessed an increase in the development of AI-driven serious games for health care purposes,
targeting various health conditions, and leveraging multiple AI algorithms; this rising trend is expected to continue for years to
come. Although the evidence uncovered in this study shows promising applications of AI-driven serious games, larger and more
rigorous, diverse, and robust studies may be needed to examine the efficacy and effectiveness of AI-driven serious games in
different populations with different health conditions.
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Introduction

Background
Since its establishment in the 21st century, video games have
experienced a boom and become an ever-growing global
industry [1]. In recent years, there has been a rapid increase in
the accessibility and ubiquity of handheld computers and smart
devices (ie, tablets, wearables, and smartphones) as well as
major advances in the underlying technology and capability of
commercial video game consoles [2], thereby providing a
plethora of opportunities to leverage video games for many
purposes. Video games used for purposes other than
entertainment (eg, education, training, research, rehabilitation,
and advertising) are called serious games [3].

In health care, serious games have been used for many purposes
such as screening, diagnosing, education, prevention, and
rehabilitation [4,5]. For example, serious games have shown
promising results in improving health education [6]; acute pain
management [7]; cognitive functions (eg, global cognition [8],
memory [9], executive functions [10], and processing speed
[11]); mental health disorders (eg, depression [12] and anxiety
[13]); and functional, motor, and sensory functions [14].
Furthermore, serious games have the potential to diagnose and
screen many diseases such as mild cognitive impairment [15],
developmental dyslexia [16], and attention-deficit/hyperactivity
disorder [17].

Serious games rely on the concept of gamification, which
involves the “use of game design elements within non-game
contexts” [18] through the structure, design, and methodology
of games [19]. According to evidence, gamification typically
relies on three elements: (1) game dynamics, including the
behaviors, interactions, and experience of the player; (2)
pedagogical or instructional design of the game; and (3) the
mechanics (ie, procedures and rules) of the game [20]. Typically,
gamification relies on the use of points, badges, leader boards,
or timed performance [21,22].

Serious games exist in several formats depending on their
therapeutic modality such as (1) exergames, which are video
games that require physical activity to be played [23]; (2)
computerized cognitive behavioral therapy games, which
provide the player with structured approaches to address and
recognize negative thinking and beliefs [24]; (3) cognitive
training games that target improving or maintaining the player’s
cognitive abilities, including executive functions, memory, and
learning [25]; or (4) biofeedback games that use electrical
sensors attached to the player to receive information about the
player’s physiological state and in turn influence some of the
player’s body functions (eg, heart rate) [26,27].

Experts suggest that artificial intelligence (AI) is positioned to
broadly reshape health care and the practice of medicine [28].
Coined by John McCarthy in a lecture at Dartmouth College in
1956 [29], AI is a branch of computer science that involves the

development of methods, techniques, and systems that
intelligently handle and analyze complex data sets and
information. In recent years, AI models have played an
increasingly central role in medical research and clinical practice
through several applications including personalized screening,
diagnosis, prognosis, monitoring, risk modeling, drug discovery,
and prediction of response to therapy [30,31].

AI-driven serious games, which are video games combined with
AI used for purposes other than entertainment, for health can
offer a customizable and immersive experience that adjusts its
speed and difficulty, for example, based on the player’s
performance [1]. Through the use of AI algorithms, serious
games can monitor the performance of players in real time [32].
For example, using data mining, serious games that leverage
AI can evaluate players’behaviors, mood, and personality while
playing a serious game [33]. In addition, AI-driven serious
games that use data mining techniques can improve players’
knowledge, skills, and training progress through the analysis
of the data collected playing the game [34,35].

Research Problem and Aim
Several studies have been conducted on AI-driven serious games
in health care. Summarizing the features of the current AI-driven
serious games is very important to explore how they have been
developed and used and their current state to plan on how to
leverage them in the current and future health care needs.
Previous reviews did not focus on AI-driven serious games [36]
and focused on a specific disease rather than health care in
general [8-13]. Therefore, this review aimed to explore the
features of AI-driven serious games in health care as reported
by previous studies. Thus, this review focused on both AI and
serious games together rather than serious games alone.
Furthermore, our review is more comprehensive than other
reviews, as it targeted serious games for any health condition
rather than targeting a specific health condition.

Methods

Overview
To achieve the abovementioned objective, we conducted a
scoping review in line with the guidelines of PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) [37].
Multimedia Appendix 1 shows the PRISMA-ScR checklist for
this review. The methods used in this review are described in
detail in the following subsections.

Search Strategy

Search Sources
The following databases were searched on January 12, 2022:
MEDLINE (via Ovid), PsycInfo (via Ovid), Embase (via Ovid),
CINAHL (via EBSCO), IEEE Xplore, ACM Digital Library,
and Google Scholar. In the case of Google Scholar, only the
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first 100 publications were considered because it retrieved a
massive number of publications, and we found that the results
quickly lost relevance and applicability beyond the first 100
hits. To identify further studies, we screened the reference lists
of the included studies and relevant reviews (ie, backward
reference list checking), and we checked the studies that cited
the included studies (ie, forward reference list checking) [38].

Search Terms
The search query in this review was developed by consulting
3 experts in digital health and by checking the search queries
used in previous reviews within this area. The developed search
query is composed of AI-related terms (eg, AI, machine
learning, and deep learning) and serious games–related terms
(eg, serious games and exergames). The search query used to
search each of the 8 databases is shown in Multimedia Appendix
2.

Study Eligibility Criteria
In this review, we included only studies that focused on
AI-driven serious games used for any purpose in health care
(eg, diagnosis, rehabilitation, prognosis, quantification,
screening, and forecasting). We focused only on serious games
that are played on any digital platform (eg, computers, consoles,
mobile phones, and handheld devices), whereas nondigital
games and those used in other fields (eg, education) were
excluded. We also focused on serious games provided to health
consumers (patients or healthy people) rather than health care
providers or caregivers. We excluded studies that provided an
overview or proposal for AI-driven serious games. This review
included only empirical studies written in English. Although
we included peer-reviewed articles, dissertations, conference
proceedings, and preprints, we excluded reviews, conference
abstracts, proposals, editorials, and commentaries. We did not
apply any restrictions on the year of publication, country of
publication, study design, population, and outcomes.

Study Selection
The study selection process in this review consisted of three
steps: (1) removing duplicates from all retrieved studies using
EndNote, (2) screening titles and abstracts of the remaining
publications, and (3) reading the entire text of the studies

included in the previous step. In the full-text screening, we read
the paper from title to conclusion in addition to the
supplementary materials. Two reviewers independently
performed the study selection process. Disagreements between
the reviewers in the second and third steps were resolved by
consulting 2 other reviewers. Cohen κ was calculated to measure
the reviewer’s agreement [39], and it was 0.81 for title and
abstract screening and 0.86 for full-text reading.

Data Extraction
Multimedia Appendix 3 displays the data extraction form used
in this review, which was pilot-tested using 5 included studies.
Three reviewers independently used Microsoft Excel to extract
data related to the characteristics of the included studies, serious
games, and AI techniques. Any disagreement between the
reviewers was resolved through discussion.

Data Synthesis
A narrative approach was used to synthesize data extracted from
the included publications. Specifically, we began by describing
the features of serious games used in the included studies in
terms of their name, target condition, purpose, therapeutic
modality, connectivity, interface, genre, types, and platform.
Then, we described the features of the AI techniques used in
the included studies in terms of their purposes, AI algorithms,
type of data, size of the data set, type of validation, and
performance. We used Microsoft Excel to manage data
synthesis.

Results

Search Results
The total number of publications retrieved by searching the
predefined databases was 1470 (Figure 1). We removed 181
duplicates from those publications. Checking the titles and
abstracts of the remainders led to the exclusion of 1117
publications due to several reasons, as shown in Figure 1. After
checking the full text of the remaining 172 publications, 129
were excluded for several reasons, as shown in Figure 1. We
identified 3 additional studies using backward and forward
reference list checking. Accordingly, the final number of
included studies was 46 [40-85].
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Figure 1. Flowchart of the study selection process. AI: artificial intelligence.

Characteristics of the Included Studies
The included studies were published between 2010 and 2021.
The years wherein the largest number of included studies were
published were 2018 (8/46, 2%) and 2019 (7/46, 15%). The
included studies were conducted in 30 different countries. The
countries that published the largest number of studies were the
United States and Spain (5/46, 11%). The included studies were
published in peer-reviewed journals (26/46, 57%) or in
conference proceedings (20/46, 44%). Multimedia Appendix 4
[40-85] presents the characteristics of each included study.

Characteristics of the Serious Games
A total of 64 different serious games were found in the included
studies (6 studies used >1 serious game). Of the 64 games, 16
(25%) were not given a specific name. Serious games were used
for 20 health conditions. Motor impairment was the most
common health condition targeted by the serious games in the
included studies (18/46, 39%), followed by attention deficit
hyperactivity disorder (4/46, 9%). Serious games were used for
5 purposes: rehabilitation (29/46, 63%), detection of diseases
or disorders (10/46, 22%), health and wellness (5/46, 11%),
education (2/46, 4%), and the prediction of players’
characteristics (1/46, 2%). The therapeutic modalities in the 29
rehabilitation games were exercise (19/29, 66%), cognitive
training (6/29, 21%), and biofeedback (5/29, 17%). The interface
of the serious games was 2D in 19 studies, 3D in 23, and 2D
and 3D in 4 studies. Serious games in the included studies could
be played by a single player (45/46, 98%) or multiplayer (1/46,
2%). Serious games were connected to an internet or network
connection (ie, web-based games) in 8 studies, whereas they
were played on stand-alone devices (offline games) in 38
studies. There were 10 genres of serious games in the included

studies, but the most common genres were role-playing games
(14/46, 30%), puzzle games (11/46, 24%), platformer games
(10/46, 22%), and sports games (8/46, 17%). The games were
designed with a serious purpose from the beginning (designed
serious games) in 42 studies, whereas they were usual video
games that were modified to be used for a serious purpose
(modified serious games) in 4 studies. The game engine used
to develop serious games was reported in 38 studies. Unity was
the most prominent game engine used in these studies (19/38,
50%). We identified 6 platforms used to play the serious games:
PCs (30/46, 65%), mobile devices (eg, mobile phones and
tablets; 10/46, 22%), virtual reality headset (4/46, 9%), treadmill
(1/46, 2%), Sifteo cubes (1/46, 2%), and a single-board computer
(Raspberry Pi; 1/46, 2%). The serious games were connected
with other devices in 36 studies: nonwearable sensors (18/46,
39%), wearable sensors (15/46, 33%), wearable devices (7/46,
15%), web camera (7/46, 15%), robotic device (3/46, 7%),
microphone (3/46, 7%), controllers (2/46, 4%), smartphone
(1/46, 2%), monitor (1/46, 2%), speakers (1/46, 2%), and
single-board computer (tiny PC; 1/46, 2%). Multimedia
Appendix 5 [40-85] shows characteristics of the serious games
in the included studies.

Characteristics of the AI Techniques
The included studies used algorithms to solve classification
problems (41/46, 89%), regression problems (5/46, 11%), and
clustering problems (2/46, 4%). Algorithms embedded in serious
games were reported in 40 studies, whereas the remaining
studies did not report the algorithms used. These studies used
27 different algorithms for serious games. The most common
algorithm used in the included studies was support vector
machine (14/46, 30%), followed by convolutional neural
network (7/46, 15%), artificial neural networks (7/46, 15%),
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and random forest (7/46, 15%). AI algorithms in the included
studies were used for 9 different purposes: detection of disease
(13/46, 28%), evaluation of user performance (13/46, 28%),
adaptation of difficulty level (7/46, 15%), recognition of gestures
(7/46, 15%), recognition of biosignals (5/46, 11%), supporting
users to play (3/46, 7%), classification of activity (2/46, 4%),
recognition of voice (2/46, 4%), and prediction of user
characteristics (1/46, 2%). Multimedia Appendix 6 [40-85]
exhibits characteristics of AI techniques leveraged by serious
games in the included studies.

The AI models in the included studies were developed using
the following types of data: kinematic data (22/46, 48%),
gameplay data (21/46, 46%), biosignal data (11/46, 24%),
demographic data (3/46, 7%), speech data (2/46, 4%), clinical
data (1/46, 2%), and laboratory data (1/46, 2%). Data used for
developing the models were collected from samples ranging
from 3 to 150, as reported in 36 studies. The mean sample size
was approximately 36 (SD 39.3). The data set size was reported
in 24 studies and ranged from 36 to 795,600, with an average
of approximately 52,124 (SD 161,862.2). The AI models in the
included studies were validated using 4 techniques: k-fold
cross-validation (13/46, 28%), training-test split validation
(13/46, 28%), leave-one-out cross-validation (7/46, 15%), and
moving-window cross-validation (1/46, 2%). The performance
of the AI models was evaluated in 32 studies using 11 different
metrics: accuracy (26/46, 57%), sensitivity (13/46, 28%),
F1-score (9/46, 20%), precision (7/46, 15%), specificity (6/46,
13%), negative predictive value (3/46, 7%), area under the curve
(3/46, 7%), root mean square error (1/46, 2%), normalized root
mean square error (1/46, 2%), kappa (1/46, 2%), and Mathew
correlation coefficient (1/46, 2%).

Discussion

Principal Findings
This study summarized the evidence about the features of
AI-driven serious games in health care as reported by previous
research. The 64 AI-driven serious games uncovered by this
study targeted 20 different health conditions, were built for
various purposes, and leveraged several therapeutic modalities
through the use of multiple AI algorithms. The evidence
uncovered in this review points to a rising trend in the use of
AI-driven serious games in health care in recent years. The
findings reported in this review were consistent with other recent
evidence. Although a review by Frutos-Pascual and Zapirain
[1] did not solely focus on AI-based serious games for health
care purposes, its findings related to AI-based serious games
were consistent with our findings with respect to their potential
application for health care purposes, AI algorithms used, and
the platforms used; there is also agreement about the need for
improved testing methodologies to ensure efficacy.

Although the studies included in this review were conducted
across the globe, many were conducted in 1 country. Therefore,
the evidence remains scarce with respect to the compatibility
of AI-driven serious games with the sociocultural practices of
consumers playing them. Literature indicates that understanding
a community’s sociocultural practices can significantly
contribute toward designing and building reliable serious games;

hence, more studies in the reported countries, as well as others,
are needed [86].

Most of the AI-driven serious games reported in the studies
examined in this review were heavily focused on the
interventional therapeutics and the detection of diseases or
disorders compared with prevention (ie, health and wellness or
education). Given the alarmingly rising rates of
noncommunicable diseases globally (eg, diabetes and
cardiovascular diseases) [87], it is imperative to invest more
efforts in developing more AI-driven serious games that focus
on prevention and not only treatment and therapy because of
the potential of serious games in providing systematic and
sustainable means of preventing or delaying the onset of such
noncommunicable diseases [5,87,88].

A recent study that developed a smartphone-based serious game
that teaches self-management to children aged 8 to 14 years
with type 1 diabetes reported that although the developed
prototype of the serious game was perceived as useful and
engaging by participants, it was not adaptable to players’
knowledge level and provided “information [that] was too basic
for participants” [89]. This presents a great opportunity for
developing AI-driven serious games that adapt to players’
abilities and knowledge level [1,90,91], making them more
engaging and meaningful.

The studies examined in this review that reported the game
engine used to develop their AI-driven serious game
predominantly used the proprietary game engine Unity (19/38,
50%). There is room for further development of AI-driven
serious games on open-source platforms [92], which can make
their development collaborative, modular, and modifiable [93].
In addition, half of the studies examined in this review required
players to play the AI-driven serious game on a PC. This goes
against the fast-paced adoption and ubiquity of smart devices,
such as smartphones and tablets.

Although only 4 studies reported the use of virtual reality
headsets, we speculate that this number will rise in the years to
come with the hype of metaverses and availability as well as
affordability of these headsets. This progression comes naturally
with the increasing adoption of connected devices, including
wearable and nonwearable sensors, as part of the AI-driven
serious game. With this in mind, we project that AI-driven
serious games will be more adaptable in an unobtrusive and
affordable manner [94].

This review found that 3D serious games were slightly more
common than 2D serious games, which is in line with the
findings of a previous review [36]. This can be attributed to the
fact that 3D games are more immersive and attractive to players.
Although 4 studies used both 2D and 3D serious games, none
of the serious games in these 4 studies had multimodal
interfaces. More precisely, each study included >1 serious game,
and the interface of each game was either 2D or 3D rather than
multimodal (2D and 3D). It is worth noting that none of these
studies compared the effectiveness of a 2D serious game with
a 3D serious game.
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Practical and Research Implications

Practical Implications
Summarizing the features of the current AI-driven serious games
helped us explore how they have been developed and used and
their current state, and this will help us plan on how to leverage
them in the current and future health care needs. Only 10 studies
in this review used smart mobile devices (ie, tablets and
smartphones). The ubiquity of smart mobile devices, coupled
with their increasing capabilities, affordability, and accessibility,
makes them more appealing for future applications of AI-driven
serious games, and smart mobile devices are certainly more
pervasive compared with personal computers and gaming
consoles [8]. Estimates of global mobile devices and mobile
users are reported to be 15 billion and 7.1 billion, respectively
[95].

There is a need to consider the sociocultural context and player
demographics when designing and developing AI-driven serious
games. In addition, involving multiple stakeholders, including
the targeted audience (ie, consumers or patients), is fundamental
to the success of an AI-driven serious game [96,97].

Research Implications
Of the 64 studies examined in this review, 14 (22%) did not
report the performance of the AI models used in the serious
games. The evidence uncovered in this study demonstrates a
promising potential for leveraging AI-driven serious games for
health care purposes, which in turn can inform future research
efforts by demonstrating the status quo of research in this
domain. With the increasing adoption of AI in medical software
and the development of serious games, and considering that AI
models may not be fully explainable at times, it becomes
imperative to rigorously test and report the performance of the
models, especially in high-stakes use cases such as missing a
diagnosis of disease [98].

The studies included in this review had sample sizes ranging
from 3 to 150, with many of them in the lower range. More
evidence and research are needed on larger sample sizes to
determine the generalizability of the findings and the impact of
AI-driven serious games. It is also essential to examine the
efficacy and effectiveness of AI-driven serious games in
different populations with different health conditions. Although
many of the studies examined in this review reported the data
set size used, numerous studies did not; therefore, we urge
researchers to not only report the data set size but also increase
it to ensure adequate performance of AI-driven serious games
for health care purposes [99]. In addition, more research,
including randomized control trials and systematic reviews,
may be needed to examine the efficacy and effectiveness of
AI-driven serious games in different populations with different
health conditions.

Strengths and Limitations

Strengths
To the best of our knowledge, this is the first review of
AI-driven serious games in health care. Only 1 previous review
focused on serious games in health care; however, it did not
focus on AI-driven serious games. Furthermore, this review can

be considered the most comprehensive review in this area, given
that it focused on all AI-driven serious games in health care
regardless of their target health condition, therapeutic modality,
game interface, number of players, connectivity, genre, type,
game engine, platform, AI techniques, data types, sample size,
data set size, and validation methods.

Bias resulting from the study selection was minimal in the
review because the 2 reviewers independently performed the
study selection process, and any disagreements between them
were resolved by consulting 2 other reviewers. Furthermore,
bias resulting from data extraction is not a concern in this
review, as 3 reviewers independently extracted data from the
included studies, and any disagreement between them was
resolved through discussion. Bias resulting from missing papers
is minimal, given that we sought to retrieve as many relevant
studies as possible by searching the most popular databases in
the information technology and health fields using a
well-developed search query and by conducting backward and
forward reference list checking.

Limitations
This review may have missed some relevant studies, given that
we excluded proposals of AI-driven serious games (ie, a
conceptual framework of a serious game), studies written in a
language other than English, and studies focused on AI-driven
serious games for health care providers and caregivers.
Furthermore, it is likely that we missed some relevant papers,
given that we did not search on Scopus and Web of Science.
Therefore, it is likely that we missed other applications and
features of AI-driven serious games. It was difficult to
synthesize data related to the performance of AI-driven serious
games for the following reasons: (1) the included studies had
considerable heterogeneity in terms of game features (eg, target
health condition, therapeutic modality, game interface, genre,
and type), AI techniques (eg, their purpose, data type, and
validation methods), and performance metrics and (2)
conclusions drawn from such synthesis of games’ performance
may be misleading because the risk of bias in the included
studies was not assessed in this review. Therefore, this review
could not comment on the performance of AI-driven serious
games.

Conclusions
The last decade witnessed an increase in the development of
AI-driven serious games for health care purposes, and this rising
trend is expected to continue for years to come. In this review,
the 64 AI-driven serious games had varying data set sizes,
ranging from only 36 to 795,000; these games reported targeting
various health conditions, with motor impairment being the
most common, and were mainly used for several therapeutic
modalities, with rehabilitation being the most reported. In
addition, these AI-driven serious games reported leveraging
multiple AI algorithms, with support vector machines being the
most used. Although the evidence uncovered in this study shows
promising applications of AI-driven serious games, and
considering the rise and rapid advances in AI and its pervasive
use in serious games in the last decade, larger, more rigorous,
diverse, and robust studies may be needed to examine the
efficacy and effectiveness of AI-driven serious games in
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different populations with different health conditions. AI-driven
serious games are expected to be a popular source to inspire the
development and design of nearly realistic health-related and

preventive interventions. Further evidence is necessary to
determine their efficacy and performance.
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