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Abstract

Background: Many studies have shown a direct relationship between physical activity and health. It has also been shown that
the average fitness level in Western societies is lower than recommended by the World Health Organization. One tool that can
be used to increase physical activity for individual people is exergaming, that is, serious games that motivate players to do physical
exercises.

Objective: This scoping review of recent studies regarding exergame efficacy aims to evaluate which sensing modalities are
used to assess exergame efficacy as well as motion quality. We also analyze how the collected motion sensing data is being
leveraged with respect to exergame efficacy and motion quality assessment.

Methods: We conducted 2 extensive and systematic searches of the ACM Digital Library and the PubMed database, as well as
a single search of the IEEE Xplore database, all according to the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement. Overall, 343 studies were assessed for eligibility by the following criteria: The study should be
peer-reviewed; the year of publication should be between 2015 and 2023; the study should be available in English or German;
the study evaluates the efficacy of at least 1 exergame; sensor data is recorded during the study and is used for evaluation; and
the study is sufficiently described to extract information on the exergames, sensors, metrics, and results.

Results: We found 67 eligible studies, which we analyzed with regard to sensor usage for both efficacy evaluation and motion
analysis. Overall, heart rate (HR) was the most commonly used vital sign to evaluate efficacy (n=52), while the Microsoft Kinect
was the most commonly used exergame sensor (n=26). The results of the analysis show that the sensors used in the exergames
and the sensors used in the evaluation are, in most cases, mutually exclusive, with motion quality rarely being considered as a
metric.

Conclusions: The lack of motion quality assessment is identified as a problem both for the studies and the exergames themselves
since incorrectly executed motions can reduce an exergame’s effectiveness and increase the risk of injury. Here we propose how
to use the same sensors both as input for the exergame and to assess motion quality by presenting recent developments in motion
recognition and sensing.

(JMIR Serious Games 2024;12:e52153) doi: 10.2196/52153
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Introduction

Exergames are interactive games with the additional goal of
engaging players in physical activity to promote a healthy
lifestyle and increase players’ physical fitness [1,2]. Increasing
availability of commercial sensing technologies has allowed
exergames such as Beat Saber (Beat Games) [3] for various
virtual reality (VR) systems and Ring Fit Adventure (Nintendo)
for Nintendo Switch [4] to reach a large audience and become
highly commercially successful, selling more than 4 million
and 14 million copies, respectively [5,6]. Typically, these
exergames use sensing technologies as input devices to either
control an in-game avatar or detect the execution of specified
motions. However, previous studies on motion-based games
suggest that exergames should also give feedback on the
motion’s quality and provide specific guidelines to follow [7,8].
Without these measures, players may not perform the demanded
motions correctly, leading to diminished health benefits and
risk of injury [9].

A common research question with regards to exergames is that
of their efficacy. Efficacy refers to the effectiveness or ability
of exergames to achieve their intended goals or their desired
effect. This goal can be defined as an increase in the
participants’performance, physical activity, or motivation [10].
Previous reviews and meta-analyses on exergames generally
confirm the existence of positive effects associated with
exergames [10-13]. Nevertheless, the reviews primarily assert
that exergames are most effective in facilitating light- to
moderate-intensity physical activity, and only a small proportion
of exergames have demonstrated the ability to significantly
increase physical activity levels among users [14-16].
Furthermore, previous reviewers have primarily focused on
assessing the efficacy of exergames in specific populations,
such as children and adolescents without [11,12,16] or explicitly
with adults with overweight [13] or older adults [15,17-19].
Only a few reviews encompass a broader range of participants
and do not specifically focus on any particular population [14].

The evaluation process, particularly sensor technology usage,
is typically not the focus of existing reviews. Hence, this paper
investigates recent studies on the efficacy of exergames to
identify which sensing technologies are used both in the
exergames themselves and in their evaluation. We further review
whether current exergames and their evaluations include any
motion quality assessment. Motion Quality as a term is not
clearly defined and is often visually evaluated by a professional
physiotherapist or sports scientist. One of the most
comprehensive approaches to defining the term is given by
Skjaerven et al [20], who found that motion quality has many
different aspects, including biomechanical as well as
physiological and temporal characteristics. Therefore, motion
quality assessment requires evaluating the motion of all relevant
body parts at every point in time. Since we want to focus on the
study design and methodology, with little regard for results or
target group, we opt for a scoping review approach. For each
study, we assess how the sensing data is being leveraged with
respect to exergame efficacy and motion quality assessment.
Based on our findings, we discuss how state-of-the-art methods
for assessing motion quality and already used sensing

technologies could be used to improve the efficacy of exergames
and reduce the risk of injury during play.

Methods

Overview
The goal of this scoping review was to identify sensing
modalities in recent studies that evaluate exergame efficacy.
For this, 3 systematic searches were conducted in accordance
with the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) statement [21] and PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) [22]. A
PRISMA-ScR checklist is provided in Multimedia Appendix
1. The database searches were conducted at different points in
time by one of the researchers, each without a detailed review
protocol.

Search Strategy and Search Terms
Due to the interdisciplinary nature of the research field, 3
different databases were included in the review. To cover both
computer science and clinical research, the ACM Digital Library
and the subject-specific PubMed database were searched on
September 14, 2022, and again on July 14, 2023. A final search
on the engineering-focused IEEE Xplore database was
conducted on January 15, 2024.

We defined 4 main requirements for studies to be included in
our review. First, studies have to feature the evaluation of an
exergame. Second, the evaluation has to be conducted
quantitatively with sensors with regard to the game’s efficacy.
Third, the games should focus on general fitness or sports to
avoid studies focusing on activities of daily living. Finally, the
studies should be recent, which we defined as being published
between 2015 and 2023. Based on these requirements, relevant
search terms were identified, combined, and generalized as
follows:

(exergam* OR “fitness game”)

AND (efficacy OR evaluat* OR “heart rate” OR vo2 OR
oxygen)

AND (fitness OR sport)

For ACM Digital Library, the search terms were searched for
in the categories “Title,” “Abstract,” and “Author Keyword,”
each category connected with an OR operator, whereas for
PubMed and IEEE Xplore, the search terms were typed “as is”
into the “Query Box” and “Command Search,” respectively. A
detailed search strategy is given in Multimedia Appendix 2.

Study Eligibility Criteria and Selection
Afterward, the following eligibility criteria based on the
previously stated requirements were defined. The results were
screened and filtered accordingly:

1. Publication type: Peer-reviewed study
2. Publication year: 2015 to 2023
3. Available in English or German
4. The study evaluates the efficacy of at least one exergame
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5. Sensor data is recorded during the study and used for
evaluation

6. The study is sufficiently described to extract information
on the exergames, sensors, metrics, and results

The studies were split among the authors to be screened by
abstract and assessed for eligibility. The results of this screening
process were then presented and discussed conjointly.

Data Extraction and Data Analysis
Eligible studies were evaluated with regard to their general
study design (including participant numbers and focus group),
their evaluation methods (including evaluation metrics, vital
signs, and sensor usage), and the exergames used (including
exergame sensors as well as additional motion sensing). The
results were again discussed, assessed for relevance for the
review, and generalized conjointly.

Results

Overview
The first search yielded 253 studies of which 30 were removed
before the screening process as they were duplicates or not
available in English or German. An additional 31 studies were
identified through previous work of included authors and citation
searching, resulting in a total of 258 studies included in the
screening process. 208 studies were excluded in this screening

process based on the eligibility criteria stated above, leaving a
total of 49 eligible studies. The second search yielded an
additional 40 studies, of which 32 were excluded from the
screening process. The final search, conducted on the IEEE
Xplore database, yielded another 50 studies. After screening by
title, abstract, and eligibility criteria, 10 studies were deemed
fitting, resulting in a total of 67 studies that were included in
our review.

Table 1 gives a brief summary of the vital sign-sensing statistics.
Multimedia Appendix 3 [23-89] and Multimedia Appendix 4
[23,24,26-58,60-90] feature additional tables that present details
for all 67 studies included in the review. Multimedia Appendix
3 provides an overview of the study design, participants, and
how efficacy was assessed. Participation numbers ranged from
6 [23] to 360 [24], with a median of 28. There was a large
variety of different focus groups, with the biggest group being
healthy adults (n=19 studies). Multimedia Appendix 4 details
the exergames and corresponding sensors used in each study
and gives information on additional motion sensing if there
were any. Not all studies explicitly mention all the exergames
evaluated; some feature the evaluation of a multitude of different
games, and some tested games they developed themselves.
Overall, the 67 studies included in our review feature the
evaluation of approximately 49 different exergames. The overall
review process with all screening steps is outlined in the
PRISMA flow diagram in Figure 1.

Table 1. Summary of vital sign sensing statistics. Detailed statistics for each study can be found in Multimedia Appendix 3.

Evaluation criteria analyzed over timeEvaluated metricsMeasured vital signs

OtherMotivationIntensity or PAdPerfor-
mance

OtherEEcMETbpeak VO2 or
% max VO2

peak HR or
% max HR

mean
HR

OtherVO2HRa

1061118451516213135182252Number
of studies

1591627672224314652273378Propor-
tion of
studies,
%

aHR: heart rate.
bMET: metabolic equivalent of task.
cEE: energy expenditure.
dPA: physical activity.

JMIR Serious Games 2024 | vol. 12 | e52153 | p. 3https://games.jmir.org/2024/1/e52153
(page number not for citation purposes)

Dill et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [21] flow diagram of the systematic review process.

Vital Sign Sensing Technologies
As per our inclusion criterion, all 67 studies aim to assess
efficacy. For that, 54 studies used sensors to measure vital signs,
while 11 studies relied only on motion sensing, and 2 studies
assessed efficacy without any sensors but with standardized
tests only. The majority, that is, 52 of the 54, measured the
player’s heart rate (HR), and 22 measured the oxygen uptake
(VO2) (more details in Table 1). Furthermore, 18 studies
measured other vital signs such as blood pressure, blood lactate
concentration, and carbon dioxide production.

Efficacy Assessment
In the context of exergames, efficacy refers to the effectiveness
or ability of exergames to achieve their intended goals or their
desired effect under optimal or controlled conditions. Efficacy
is distinguished from effectiveness, with efficacy focusing on
how well an approach works in ideal conditions, while
effectiveness considers its performance in real-world or practical
situations [91]. However, this distinction is not always clearly
made by the researchers [25]. Therefore, in the context of this
review, the 2 terms are used interchangeably. Typical goals for
exergames can be defined as an increase in the participants’
performance, physical activity, or motivation [10,92]. Exergame
efficacy is usually evaluated by analyzing these metrics over
time or in comparison with conventional physical exercises.
Often, they are estimated by measuring vital signs, doing
standardized tests, or filling out questionnaires. Efficacy is a
highly individual metric and will vary for different activities,
different target demographics, and from person to person [10].

When looking at the studies’ approaches to assessing exergame
efficacy, several different study designs were identified. First
of all, a distinction can be made by whether the studies evaluate
a single group or compare 2 or more groups. The former is

referred to as a within-subject or cross-over study. The latter
category is referred to as controlled studies, which again can
be split into 2 subcategories. Randomized controlled studies
compare randomly split groups, while cross-section studies
compare nonrandomized groups based on preexisting conditions.
The studies can also be categorized by how many measurements
are done. Single-measurement studies use measured metrics
and questionnaires to compare the participants’ performance,
motivation, and general physical activity with nongaming-related
exercises. Alternatively, studies with the repeated-measures
design, focusing on the long-term effects of exergaming, do the
same measurements more than once to observe longitudinal
developments. The latter approach was used by 22 studies, while
the other 45 studies focused on the first approach. Details on
the study design of every included study can be found in
Multimedia Appendix 3.

Acute Effects
A total of 53 out of the 67 (79%) studies focus on efficacy
evaluation by measuring vital signs in their studies. Out of all
analyzed studies (more details in Table 1), 35 reported mean
HR, and 31 reported peak HR or proportionate maximum HR
(%max HR), with the maximum HR commonly being
age-predicted. Ventilation-based evaluation took place in 21
analyzed studies, reporting peak VO2 or proportionate maximum
VO2 (%max VO2).

Based on the recorded vital signs, 15 studies processed their
participants’ data to indicate the recorded energy expenditure
(EE) for the exergame activity. In total, 16 studies calculated
and reported the metabolic equivalent of task (MET) values for
each activity. A total of 8 studies overlapped with studies
reporting EE. Furthermore, noteworthy vital-sign-based
evaluation metrics are systolic and diastolic blood pressure
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[26-29], heart rate reserve [30-33], pulse wave velocity with
total peripheral resistance and stroke volume [34], respiratory
exchange rate [35,36], lactate concentration [37,38], maximum
power output [39], muscle activity [40], concentration through
EEG (electroencephalography) [41]. In 3 studies, other derived
indicators are used: play intensity and hemodynamic reactivity
are calculated based on players’heart rate [37], and the so-called
activity counts are based on accelerometer measurements
[42,43]. Many studies used subjective questionnaire scales for
assessment, which we do not evaluate as they are unrelated to
vital sign sensing.

Long-Term Effects
Although many analyzed studies (35 out of 67) comprised more
than 1 session of playing exergames, only a minority evaluated
changes over time (22 out of 67), and thus qualifies as a
longitudinal study in the context of this paper. The evaluation
time for longitudinal studies ranged from 4 weeks [44-47] to 6
months [48].

As detailed in Multimedia Appendix 3, most researchers
analyzed players’ performance. The performance evaluation
was predominantly done objectively by tracking changes in
anaerobic [46,49,50] or muscular fitness [51,52], functional
strength [50], peak VO2 [28,48], postural control [45], reaction
time [24], or cognitive function [53]. The performance was
sometimes evaluated subjectively using exercise self-efficacy
score [54].

Other evaluation metrics analyzed over time include changes
in intensity, usually based on HR or EE [29,45,55,56], whereas
further research publications evaluated playtime for different
physical activity levels [28,48,51]. In addition to performance
and intensity, 6 research publications analyzed changes in
motivation, such as play frequency and duration [56] as well as
flow [45], player engagement [55] or enjoyment [54], and
happiness [57].

Motion Sensing Technologies
The 67 reviewed studies assess various exergames that use
different motion sensing technologies, among which the Kinect
for Xbox 360 (Microsoft Corp) [93] is the most commonly used
(26 out of 67). The Kinect combines a regular RGB
(red-green-blue) camera with a depth sensor and can thus be
considered a camera-based system. In addition, 1 study each
included an exergame using the EyeToy (London Studio) for
PlayStation 2 [54] and PS Move (Sony Interactive
Entertainment) for PlayStation 3 [44], resulting in 28 out of 67
studies featuring at least one camera-based system. Ergometers,
dance mats, balance boards, and other sensing technologies
specialized for specific motions are used in 21 out of 67 studies
and, thus, make up the second-most common type of motion
sensing technology.

VR systems and body-worn inertial measurement units (IMUs)
are featured less commonly. Only 5 out of 67 studies feature
body-worn IMUs for motion sensing, and only one of them uses
IMUs not included in a smartphone or game controller.
Furthermore, 7 studies evaluate exergames that use the Nintendo
Wii remote controllers held in the player’s hands. These
controllers are not body-worn and combine an IMU and an

infrared sensor with an external emitter for tracking. Together
with VR systems, which were used in 16 out of 67 studies as
either standalone or within the so-called ExerCube (Sphery AG)
[94], they make up the category of hybrid sensing (overall
n=22). Finally, one study [58] features a game that does not use
any form of motion sensing.

Out of the 67 studies, 21 did additional motion sensing during
the exergaming for evaluation purposes. Common motion
sensors used for this task are body-worn accelerometers and
IMUs (used in 12 studies) and force plates (used in 4 studies).
Furthermore, 2 studies used hybrid motion-capture systems,
and 2 used camera-based systems. A specialized system to
measure reaction times, an exercise bike, surface
electromyography, and a handgrip dynamometer were used in
1 study each.

Motion Quality Assessment
Motion quality, as a term, is not clearly defined and is often
visually evaluated by a professional physiotherapist or sports
scientist. One of the most comprehensive approaches to defining
the term is given by Skjaerven et al [20], where they investigated
the lived experiences of a group of expert physiotherapists in
search of essential characteristics and features of the term. They
found that motion quality has many different aspects, including
the biomechanical “characteristics of path and form in [motion]”
as well as the physiological and temporal “characteristic of flow,
elasticity, vitality, and rhythm in [motion].” Therefore, to
provide specific feedback on the full motion quality, it would
be necessary to assess the whole motion by tracking and
evaluating the motion of all relevant body parts at every point
in time, independent from the gameplay.

An essential part of exergaming is the game’s ability to track
and analyze the player’s motions to judge the player’s gameplay
and their exercise quality. Often, exergames focus on the
gameplay aspect, only evaluating motions implicitly by requiring
players to interact with the virtual environment, for example,
slashing, collecting, or avoiding virtual objects [3,39,40,95,96].
Alternatively, some games combine both evaluations by having
players fit a predefined shape [59,97,98]. While such an
approach might be suitable to verify if players are performing
a specific motion at all, it only enables detecting static poses or
certain joints without analyzing the holistic motion execution.

None of the 49 games featured in the studies explicitly assess
the quality of exercises performed. However, 7 studies use
additional motion sensing to do some form of quality assessment
during their evaluation. In addition, 4 of these 7 studies focus
on specific motion aspects, such as assessing the angular
displacement or range of motion of certain joints [41,55],
quantifying postural sway [45], and evaluating shoulder
flexibility [26]. Only 3 studies [44,51,60] assess the players’
motion quality as a whole, using a multitude of sensors and
either a standardized test or a professional physiotherapist.
However, for 2 of the studies, these assessments do not happen
during the exergame but are used to identify general motion
quality at times when the subjects are not playing. The final
study [44] employs an expert to do an analysis of gross upper
body biomechanics based on video recordings of the subjects
during the exergames. Therefore, this is the only study in our
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review that fulfills the condition of holistically evaluating all
relevant body parts at every point in time during the exercise,
which we consider necessary for motion quality assessment,
according to Skjaerven et al [20]. However, this is not an
automated process and instead requires manual input from an
expert.

Discussion

Overview
To the best of our knowledge, this review represents the first
work analyzing sensor usage in studies that examine exergame
efficacy. We found 67 eligible studies, which we analyzed with
regard to sensor usage for both efficacy evaluation and motion
analysis. Overall, HR was the most commonly used vital sign
to evaluate efficacy (n=52), while the Microsoft Kinect was the
most commonly used exergame sensor (n=26). The results of
the analysis show that the sensors used in the exergames and
the sensors used in the evaluation are, in most cases, mutually
exclusive.

Principal Findings
From the review, 2 main conclusions can be drawn: First, the
majority of papers focus on measuring vital signs to infer a
physical activity metric. Second, an overall lack of motion
quality assessment can be stated among exergame studies. For
the studies, this lack of quality assessment can lead to undetected
and unwanted influences on the results. For example, it might
be hard to differentiate if a lack of efficacy should be attributed
to the exergame or to the participants’ execution, especially in
longitudinal studies. Furthermore, it also poses a problem for
the exergames themselves since the players are incentivized to
optimize for score, which might lead to optimal gameplay that
does not coincide with a correct exercise execution and might
lead to injuries instead of increased health [9]. Therefore, in the
following outlook, we outline how different types of sensor
technologies could be used with existing motion analysis
techniques to assess motion quality in exergames.

Outlook

Quality Assessment Based on Cameras

Overview

While the traditional approach of motion analysis by a camera
is a hybrid one with visual markers attached to certain body
parts, a lot of recent research has focused on markerless methods
solely based on single-camera video images [99]. This gives
cameras a few advantages over other sensing methods: They
are unobtrusive to the players and allow them a full range of
motion; they can be easily set up and moved around, and they
are comparably cheap and widely available [99]. The recent
approaches can be differentiated by their modality: While classic
RGB cameras are mostly used when no depth information is
needed, so-called RGB-D (red-green-blue-depth) cameras like
the Microsoft Kinect [93] are able to also record depth
information [100,101].

RGB-D

As stated, 26 of the 28 exergames considered in the review that
used cameras for the gaming input relied on the Kinect RGB-D
camera. In addition to the advantages of cameras already listed,
the Kinect also has its origin in gaming, making it a widespread
tool not only for scientists but also for game developers.
However, all papers in our review use the Kinect only as input
for the games, not for an explicit motion quality assessment.
This is surprising as, outside of the exergaming context, RGB-D
cameras are used in several motion research areas, such as gait
analysis [102-104] and fall detection [105], where they have
shown to be a reliable tool to capture and evaluate full-body
movements. Sporadically, the Kinect has been used in
exergaming-related motion analysis as well, albeit not for quality
control in an efficacy assessment study. Examples include
motion dissimilarity analysis [106] or interrater reliability
evaluation between a Kinect system [107] and a human rater.

RGB

In contrast, classic RGB cameras are not commonly used as
motion sensors in exergaming, aside from rare examples [108].
This is also apparent from our review since only 2 exergames
used an RGB camera compared to the 26 using the Kinect.
However, studies without exergame context have shown that
modern RGB-based systems are well-suited to do quantitative
motion analysis. Systems like MonoCap (Zhejiang University)
[109], OpenPose (Carnegie Mellon University) [110], and
MediaPipe Pose (Google) [111] have proven that full-body pose
estimation can be done with high accuracy. One of the most
well-researched applications of RGB-based motion analysis is
gait analysis, which can either be done with a feature-based
approach using pose estimation [112-114] or a feature-less
approach directly on the images [115,116]. More complex
medical applications such as joint load prediction [117] and
motion limitation analysis [118] indicate the method’s ability
to do precise quality assessment of human movements.
Furthermore, RGB cameras have already been used in sports
analysis [119]. These use cases imply the suitability of RGB
cameras as a tool for both gaming input and quality assessment
in exergaming.

Quality Assessment Based on Hybrid Sensing
Techniques
The release of consumer-grade virtual reality systems
contributed to the development of many immersive exergames.
An analysis of the 29 top VR exergames from a recent review
[120] shows that players prefer games providing a high level
of exertion (equivalent to real-world exercise level), whereas a
high level of immersion is important for distraction (reducing
perceived exertion). Most reviewed exergames using hybrid
sensing technology indeed provide a playful fitness experience;
nevertheless, existing approaches often fail to analyze motion
execution to detect errors or to provide specific feedback on
motion quality. For example, approaches letting players fit a
predefined shape [59,97,98] might be suitable to verify if players
are performing a specific motion at all. However, they only
enable the detection of static poses without analyzing motion
execution. Furthermore, many VR exergames enabling
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interaction with VR objects usually depend only on hand-held
devices and often lack lower body movement.

To overcome this limitation, other researchers use additional
off-the-shelf VR sensors. Previous studies already concluded
that VR sensors are feasible for clinical, research, and industry
usage [121,122]. For example, Martin-Niedecken et al [90,123]
demonstrated how trackers attached to wrists and ankles can be
used to recognize different exercises, such as burpees, lunges,
and punches. The motion quality, presented by a star ranking,
is then assessed according to how well players reached
predetermined target points and how quickly they returned to
their initial pose. A further study [124] also analyzes the entire
motion execution of different yoga poses and thereby identifies
execution errors.

Another possibility to assess motion quality is marker-based
motion capture systems, for example, OptiTrack (NaturalPoint
Inc.) [125] and Vicon Tracker (Vicon Motion Systems Ltd.)
[126]. These systems are the gold standard for tracking
individual joint positions and angular movements with high
accuracy and low latency [127,128]. However, as such systems
require several markers and cameras, they can be obtrusive and
not suitable for home or clinical environments. Nevertheless,
previous research publications have already demonstrated that
motion capture suits are reliable for analyzing holistic motion
executions during dance [129], identifying exercise execution
errors during physical exercise [130], or conducting kinematic
trunk motion analysis [60].

Quality Assessment Based on Body-Worn Sensors
IMUs consisting of an accelerometer, a gyroscope, and
sometimes a magnetometer are the most common types of
body-worn sensors. They are integrated into commercial devices
such as smartphones, smartwatches, and fitness trackers. Among
other things, they are often used to track fitness activities and
activities of daily living. Compared with camera-based or hybrid
approaches, they are particularly well suited to track
nonstationary activities. In the following, we will not discuss
other body-worn sensors, such as EMG sensors, because of their
limited availability and applicability.

While regular body-worn IMUs do not provide as extensive
motion data as camera-based or hybrid systems, exergames
could use them as robust, low-cost sensors to assess specific
quality metrics and enable tracking without a stationary setup.
An example of this can be seen in the commercially successful
exergame Ring Fit Adventure (Nintendo) for the Nintendo Wii,
which tracks and assesses performed exercises through IMUs
placed at the thigh and the inside of an elastic ring held by the
user. Alternatively, commercial IMU-based systems such as
Xsens (Movella) [131], Noraxon Ultium Motion (Noraxon)
[132], or the Teslasuit (Teslasuit, Deep Divers Ltd) [133] could
be used for an extensive motion analysis in a mobile setting
[130].

Whereas some exergames in our reviewed papers use controllers
that incorporate an IMU, none rely purely on body-worn sensors
for tracking. In 7 papers [41,43,51,60-64], body-worn IMUs
are used to assess physical activity. Only Ko et al [41] and
Mueller et al [60] additionally use body-worn IMU data for

quality assessment by determining the users’ range of motion
and back posture respectively.

In their review, Rana and Mittal [134] show that wearable
sensors can be successfully deployed for kinematic analysis in
a variety of sports applications. While these included sports
applications such as swimming [135,136], which are ill-suited
for exergames, most sports applications presented could be
integrated into exergames. Particularly noteworthy applications
are swing sports such as tennis [137-143] and badminton
[140,144], in which IMUs can either be wrist-worn or integrated
into the racket to track and assess individual swings, as it can
be difficult to track these with stationary setups in a practical
setting.

Limitations
This scoping review is prone to the same search-related
limitations as other reviews of this type. First, only articles
published in international journals and full articles published
in conference proceedings written in English or German are
considered. Therefore, potentially relevant studies published in
other languages may have been missed. Second, some articles
were excluded from the analysis because the required
information to assess their eligibility based on the inclusion
criteria was not provided. Third, we assess a lack of
reproducibility for the ACM Digital Library. In general, a very
high volatility can be noted in the amount of records ACM’s
search function returns when changing individual words or
operators. Since the current search results in less records than
the original search, which were all included in the review, we
consider this to be a minor limitation. Finally, out of the 67
studies included in this scoping review, 8 studies were not found
firsthand using the search terms but instead through previous
work of included authors and citation searching. This may
indicate that there would have been even more fitting search
terms for the review question. However, due to the author’s
experience with the topic and the unambiguity of the results,
we are confident that we were able to mitigate any possible
negative effects and that the included studies present a complete
overview of the current state of research.

In addition to limitations related to the search, we can also note
2 limitations related to the scope of evaluation. They are a
deliberately chosen result of our research focus, which means
to analyze the studies’ methodology with regards to sensing
instead of their results. First, the definitions for the terms
“efficacy” and “motion quality” used in this paper focus on how
these 2 metrics are evaluated and do not go into detail on what
qualifies as “good” efficacy or motion quality. Instead, we
evaluate how well the studies are able to assess efficacy and
motion quality with the methodology and especially the sensors
they use. Therefore, we do not define what a “high/low quality
motion” may look like as this question is highly specific to the
individual motion and therefore cannot be answered generally.
For the same reason, we also do not go into detail on the cohorts’
age, sex, and focus group as they are predominantly relevant to
the studies’ results.
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Conclusions
In this paper, we conduct a scoping review of recent studies that
examine exergame efficacy to determine which sensors are
being used and how they are being used during gameplay and
evaluation. Our results show that most studies evaluate exergame
efficacy by measuring vital signs, the most common being heart
rate (52 out of 67) and oxygen consumption (22 out of 67).
However, motion quality is only assessed in 7 out of 67 studies
despite being an important factor in an exergame’s effectiveness
and risk of injury. Furthermore, out of the 49 exergames
evaluated in the reviewed studies, none feature quality

assessment during or after gameplay, and only 3 studies feature
motion quality assessment beyond the exergame’s feedback.

Since exergames already use motion sensing technologies to
track the player’s motions, they could also be used for external
quality assessment. Therefore, we discuss recent advances in
the field of motion analysis and potential use cases of different
sensors commonly used in exergames. We come to the
conclusion that many of the same sensing technologies typically
used in exergames and exergame studies are well-suited for
additional motion quality assessment to ensure consistent
exergame effectiveness and reduce the likelihood of injury while
exergaming.
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Abbreviations
EE: energy expenditure
EEG: electroencephalography
HR: heart rate
IMU: inertial measurement unit
MET: metabolic equivalent of task
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
RGB: red-green-blue
RGB-D: red-green-blue-depth
VO2: oxygen uptake
VR: virtual reality
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