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Abstract

Background: Cochlear implants are implanted hearing devices; instead of amplifying sounds like common hearing aids, this
technology delivers preprocessed sound information directly to the hearing (ie, auditory) nerves. After surgery and the first
cochlear implant activation, patients must practice interpreting the new auditory sensations, especially for language comprehension.
This rehabilitation process is accompanied by hearing therapy through face-to-face training with a therapist, self-directed training,
and computer-based auditory training.

Objective: In general, self-directed, computer-based auditory training tasks have already shown advantages. However, compliance
of cochlear implant recipients is still a major factor, especially for self-directed training at home. Hence, we aimed to explore the
combination of 2 techniques to enhance learner motivation in this context: adaptive learning (in the form of an intelligent tutoring
system) and game-based learning (in the form of a serious game).

Methods: Following the suggestions of the evidence-centered design framework, a domain analysis of hearing therapy was
conducted, allowing us to partially describe human hearing skill as a probabilistic competence model (Bayesian network). We
developed an algorithm that uses such a model to estimate the current competence level of a patient and create training
recommendations. For training, our developed task system was based on 7 language comprehension task types that act as a
blueprint for generating tasks of diverse difficulty automatically. To achieve this, 1053 audio assets with meta-information labels
were created. We embedded the adaptive task system into a graphic novel–like mobile serious game. German-speaking cochlear
implant recipients used the system during a feasibility study for 4 weeks.

Results: The 23 adult participants (20 women; 3 men) fulfilled 2259 tasks. In total, 2004 (90.5%) tasks were solved correctly,
and 255 (9.5%) tasks were solved incorrectly. A generalized additive model analysis of these tasks indicated that the system
adapted to the estimated competency levels of the cochlear implant recipients more quickly in the beginning than at the end.
Compared with a uniform distribution of all task types, the recommended task types differed (χ²6=86.713; P<.001), indicating
that the system selected specific task types for each patient. This is underlined by the identified categories for the error proportions
of the task types.
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Conclusions: This contribution demonstrates the feasibility of combining an intelligent tutoring system with a serious game in
cochlear implant rehabilitation therapies. The findings presented here could lead to further advances in cochlear implant care and
aural rehabilitation in general.

Trial Registration: German Clinical Trials Register (DRKS) DRKS00022860; https://drks.de/search/en/trial/DRKS00022860

(JMIR Serious Games 2024;12:e55231) doi: 10.2196/55231
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Introduction

Background
Globally, an estimated 1.5 billion people develop mild (<20-34
dB; approximately 1.1 billion people) to complete (>95 dB;
approximately 12.6 million people) hearing loss [1,2]. Older
adults (aged ≥50 years) are much more affected [1]. If traditional
external sound-amplifying hearing aids cannot treat severe or
profound (≥70 dB [3]) hearing loss anymore, a cochlear implant
is a viable solution for specific individuals [4]. Implantation
depends on the individual clinical picture—for example, for
one (ie, single sided) or both (ie, bilateral) ears or together with
an additional hearing aid (ie, bimodal) [5]—and other
prerequisites, such as access to and financial support for aural
rehabilitation [1,6,7]. The underlying idea of cochlear implants
is to stimulate the auditory nerve from within the cochlea with
electrical signals generated by an externally carried processor
[1,4]. Hence, the damaged areas of the auditory system in the
inner ear are bypassed through a cochlear implant, resulting in
a coarser signal resolution than a normal hearing sensation [1,8].
Therefore, patients must learn and practice interpreting this new
stimulus of the auditory nerve, especially for language
comprehension [7]. Supporting this learning process, postsurgery
auditory training is crucial for cochlear implant recipients
[6,9,10].

Auditory training can be divided into 2 main categories:
face-to-face auditory training guided by a therapist and
self-directed, home-based auditory training by the cochlear
implant recipients themselves [10]. For most cochlear implant
recipients in many countries, ongoing face-to-face auditory
training is unattainable owing to financial limitations and the
unavailability of therapists [11]. Hence, cochlear implant
recipients are usually supported with self-directed, home-based
auditory training materials like reading aloud tasks; having
someone else read specific content to the cochlear implant
recipient; listening to audiobooks, the radio, or television; or
computer-based auditory training [10].

Unlike other auditory training materials, computer-based
auditory training provides benefits such as automated testing
and scoring, progress monitoring, real-time corrective feedback,
or customized training [6,10]. Therefore, computer-based
auditory training (with a particular focus on cochlear implant
recipients [6,10-14]) gained much attention as an inexpensive,
low-threshold, and successful rehabilitation form [6,9,10].
However, Völter et al [14] noted that a crucial determinant for
the success of self-directed auditory training lies in the intrinsic

motivation of the patient to adhere to a given training. However,
as the authors noted further, patients with chronic illnesses are
often driven by external motivation [14]. The patients are aware
that the learning and training will be exhausting or painful but
observe it as a necessary step to reach a desirable and enjoyable
outcome [15].

Drummond et al [15] argue that in the context of eHealth,
serious games can specifically address extrinsically motivated
learners if the serious game lets the learners experience the
enjoyment of the future outcome while presenting the learning
activities. While the game design aspects of serious games, such
as motivational, ludic activity, or narrative elements, are relevant
to create this joyful experience [16-19], it has been shown that
the educational content of serious games, such as exercises,
meta-cognitive, or meta-reflection support, must be adapted to
the actual skill level of the learner to avoid a motivational
decrease (eg, through frustration or boredom) [19-21]. To
achieve these dynamic adaptations, intelligent tutoring systems
have emerged to mimic distinct human tutoring interventions
[22,23]. Therefore, such systems must provide two
domain-specific functionalities: (1) a detailed learner analysis
and, based on this analysis, (2) a recommender service for
content and instructional adaptations [24] (see research question
[RQ] 1 and RQ2).

A recent literature review revealed that intelligent tutoring
systems combined with gamified or playful content (eg, serious
games) are common in the fields of science, technology,
engineering, mathematics, and language learning [22,25]. Hence,
with this feasibility study, we presented a novel approach that
combined an intelligent tutoring system with a serious game in
the context of aural rehabilitation for adult German-speaking
cochlear implant recipients (see RQ3). We wanted to encourage
future researchers and developers to build more advanced
computer-based auditory training by answering the following
RQs:

• RQ1: How can an intelligent tutoring system estimate a
cochlear implant recipient’s current level of language
comprehension?

• RQ2: How can an intelligent tutoring system generate tasks
for cochlear implant recipients that match their current level
of language comprehension?

• RQ3: How can an intelligent tutoring system be embedded
into a serious game to create adaptive and game-based
auditory rehabilitation training?
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Adaptive Adjustments of Educational Systems
A digital, adaptive educational system tries to improve learning
outcomes and raise engagement by altering the training
application to a student’s or learner’s specific needs [21,26].
While the characteristics of these kinds of systems vary,
researchers generally refer to them as computer-aided
instruction, adaptive learning systems, or intelligent tutoring
systems [22]. Usually, an intelligent tutoring system contains
4 conceptual models: the domain model (or content model), the
learner model (or student model), the tutor model (or
instructional model), and the interface model (or presentation
model) [22,23,27]. The domain model contains all
domain-related information pieces and their implicit and explicit
structure and interdependencies [22,23,28]. The learner model
captures what a person knows and does, for example,
knowledge, preferred learning style, goals, or demographics
[22,23,27]. The tutor model encompasses the didactic
components and instructional strategy [22,23,27]. The interface
model facilitates the interaction between learners and an
intelligent tutoring system [22,23]. In a nutshell, the tutor model
uses the learner model as the source for adaptation and the
domain model and the interface model as targets for adaptation
[22,23,27]. Therefore, examples of adaptation targets are specific
content (eg, present feedback for specific errors), navigation
(eg, the sequence of learning objects), presentation forms (eg,
text vs video), and assessments (eg, difficulty level) [29].

Due to the variety of artificial intelligence systems used in
educational systems in the past years [30,31], a definition of
requirements for our use case is needed. First, due to the lack
of available datasets about German-speaking cochlear implant
recipients, a system design was needed to overcome a so-called
“cold start problem” [31]. Second, due to ethical concerns, we
were looking for an algorithm in the context of explainable
artificial intelligence [25,30]. Regarding these preconditions,
the evidence-centered design (ECD) framework seems to be a
fitting methodology supporting the design and development
process of the presented conceptual models.

Almond et al [32] summarized the ECD as “an approach for
constructing educational assessments in terms of evidentiary
arguments.” They argue that when learners fulfill tasks, they
create some kind of result (work products) that incorporates (to
some degree) the learner’s performance (compare with the study
by Gnadlinger et al [33]). Thus, work products contain evidence
about a learner’s latent competencies. Extracting evidence for
competencies from performance aligns well with Forth’s [34]
definition of competency as a “...set of skills and behaviors
required in the performance of a task or activity within a specific
context.” Hence, if a computer-based system collects this
evidence, it can also model the learner’s competencies to some
degree. While the ECD does not strictly depend on a specific
statistical method to describe the learner model, Bayesian
networks have often been used and suggested in the past [19,32].
Bayesian networks are probabilistic graphical models that hold
a set of variables and their conditional dependencies as a
directed acyclic graph [35]. The core idea of Bayesian networks
is to use measurable variables (eg, exercise results) to infer
directly immeasurable or latent variables (eg, the level of a
complex competency) [35]. Hence, Bayesian networks can be

used to model the learner’s competencies and continuously
describe the current beliefs about these competencies by
updating the measurable variables based on evidence from
multiple tasks [32]. In the Conceptual Assessment Framework
and Assessment Implementation section, we present how this
can be achieved according to the use case of a learner model
for language comprehension of cochlear implant recipients.
Furthermore, we show how the other conceptual models that
address these 2 prerequisites were designed and built.

Aural Rehabilitation and Existing Auditory Training
Aural rehabilitation can be seen as a synonym for audiologic
rehabilitation, auditory rehabilitation, hearing rehabilitation,
and rehabilitative audiology and describes any intervention that
addresses the communicative and psychosocial consequences
of hearing loss [36,37]. Auditory training interventions vary in
many aspects, such as training stimuli (eg, pure tones, phonemes,
and complete sentences); frequency; duration of the training;
and complexity [38]. It was shown that active, lexically oriented
auditory training supported the learning process of adults far
better than passive exercises [8]. In addition, a recent
comparison of 16 studies of active auditory training provides
evidence that intensive auditory and auditory-cognitive training
supports the improvement of aural communication skills [38].
In a similar way this is also addressed by Deutsche Gesellschaft
für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie
(German Society of Oto-Rhino-Laryngology, Head and Neck
Surgery) [39].

Some very popular auditory training tools for English-speaking
cochlear implant recipients are Angel Sound [40], the Listening
Room [41], and MED-EL Academy [42]. A recent literature
review of German and English computer-based auditory training
shows that some auditory training systems support adaptivity
and real-time feedback [9]. One prototype for a
German-speaking hearing training platform was Train2hear
[13,14]. It supports adaptive exercises to a certain extent and
embeds different learning modules (filled with exercises) into
a story about a journey through Europe. These systems generally
analyze the quantity and kind of errors, the exercise duration,
and the number of assistance requests to adapt exercises or
training plans [13,14,40,41]. The supported adaptation of
exercises can be categorized into (1) audio content—for
example, differentiated by type (ie, syllables, words, sentences,
and texts), similarity or complexity, and length (eg, word
length); (2) hearing taxonomy—for example, differentiated into
understanding, identification, discrimination, and detection; (3)
exercise conditions—for example, difficulty adjustment via
background noise, open or closed exercise sets, and the
possibility for users to obtain assistance (eg, repetition) [13,14].
While some available platforms are well advanced according
to the number of exercises and available content, none embed
these exercises into a game-based learning environment. On the
other hand, Garadat [43] successfully demonstrated the impact
of a serious game to enhance the perceptual learning of speech
by English-speaking cochlear recipients.

Hence, with this contribution, we presented a novel approach
that combines an intelligent tutoring system that encountered
the 2 major requirements (“cold start”—capable and
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explainable), with a serious game in the context of aural
rehabilitation for German-speaking adult cochlear implant
recipients.

Methods

Design and Development Process
The system design started from the perspective of assessments
owing to the behavior of hearing therapists, who included

exercises and tasks to assess hearing competencies and adapt
the rehabilitation program. The ECD was followed because this
methodology supported the design of assessments in educational
systems and the inference of relevant competencies (Textbox
1).

Textbox 1. Main phases of the evidence-centered design framework from the study by Mislevy et al [44].

Domain Analysis

“Domain analysis marshals beliefs, representations, and modes of discourse for the target domain.”

Domain Modeling

“Assessment developers organize insights about the domain from domain analysis... and [articulate] dependencies in knowledge, skills, and attributes
in the domain, and the relationships of these capabilities to situations and activities.”

The Conceptual Assessment Framework

“The designers combine domain information with information about goals, constraints, and logistics to create a blueprint for an assessment.”

Assessment Implementation

“Assessment practitioners create functioning realizations of the models articulated in the Conceptual Assessment Framework.”

Assessment Delivery

“In this layer, students interact with tasks, their performances are evaluated, and feedback and reports are produced.”

Domain Analysis and Domain Modeling Phase
In the beginning, an interdisciplinary team was gathered,
including 2 language and speech therapists, a linguist, an
audiologist, a cochlear implant surgeon, a game designer, 2
research associates with human-computer interaction
backgrounds, and 2 software engineers. At the beginning of the
design phase, the clinical staff gave insights into the aural
rehabilitation process to the research associates. The research
associates were also invited to participate in 2 face-to-face
therapy sessions. Afterward, the team collaboratively designed
a graphical model to describe the ability to hear and its
subcompetencies in 4 distinct steps. First, the ability to hear
was divided into general areas from “nonlexical language
understanding” to “spoken language understanding” and
additional sublayers from “nonlexical,” “lexical,” and
“morphosyntactic.” Second, the experts agreed on major
subcompetencies within the resulting areas, which the training
environment should cover (visualized in blue in Figure 1). Third,
the experts added the relationships between those
subcompetencies. Finally, 7 different observable variables were
defined: “sentence identification,” “word differentiation,” “word
identification,” “consonant differentiation,” “vowel
differentiation,” “sound categorization,” and “sound perception”
(visualized as observable variables in Figure 1). The Conceptual
Assessment Framework and Assessment Implementation section
illustrates how these observable variables are used. The main
result of this phase is a conceptional competency model pictured
in Figure 1.

Conceptual Assessment Framework and Assessment
Implementation
In the 2 ECD phases explained subsequently, the conceptional
definition and implementation of the 4 main models of the
intelligent tutoring system and serious game were performed.

Learner Model
Initially, the conceptual competency model was transformed
into a Bayesian network to create a machine-interpretable but
human-explainable learner model. This alteration enables an
ongoing use of this model for estimating the cochlear implant
recipient’s current competency level in the form of competency
beliefs (compare this process with Almond et al [32,45]). To
do so, all nodes of this Bayesian network—the overall
competence “hearing,” the subcompetencies, and observable
variables visualized in Figure 1—are represented as a probability
distribution of 3 states: “low,” “medium,” and “high” (compare
with the node “sound perception” in Figure 1).

These random variables describe the system’s beliefs about a
cochlear implant recipient’s competence—whether it is more
likely to be “low,” “medium,” or “high.” In addition, all
conditional probability tables within this Bayesian network were
evenly distributed, which means that “phoneme understanding”
depends in the same way on “vowel differentiation” as on
“consonant differentiation” (Figure 1). We used these states as
demonstrated in examples provided by Shute et al [19] and
Almond et al [32], as they are straightforward to understand but
also effectively capable of illustrating the benefit of using
Bayesian networks [32].
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Figure 1. Simplified and reduced learner model for language comprehension subcompetencies.

By slightly changing the distribution of the states (“low,”
“medium,” or “high”) from the observable variables according
to each task result, the probability distribution will converge to
a particular state over time. For example, if the cochlear implant
recipient shows a feeble performance in the task type “sound
perception,” the probability state “low” of the observable
variable “sound perception” will increase, while the probability
of “medium” and “high” will decrease (Figure 1). In addition
to this described update of a specific observable variable, an
inference process of the Bayesian network allows the system
to update the related competencies [33]. Therefore, for example,
if the cochlear implant recipient shows an excellent performance
in the task type “sound perception,” the probability state “high”
of the variable “sound categorization” will increase, while the
probability of states “low” and “medium” will decrease. This
process follows the arcs of the nodes in the hierarchy of the

Bayesian network (Figure 1). By repeating this update process
on individual Bayesian networks for each cochlear implant
recipient according to their task results, the competence
distributions of each node in this network converge to a
particular state (“low,” “medium,” or “high”). In this way, an
explainable learner model that can describe the beliefs of the
system about the competencies of each individual cochlear
implant recipient was created.

Domain Model and Interface Model
The content model comprises 7 task types, each designed as
single-choice tasks addressing a specific observable variable
within the learner model (Figure 1). All tasks were designed
and developed similarly (Figure 2C). The target group is
predominantly German-speaking; therefore, only German
elements are available as screenshots.
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Figure 2. Interface of the serious game. (A) Story decision element; (B) simple dialogue element; (C) task element; and (D) feedback element at the
top (notification says “Correct!”). For better readability, we translated the text into English. Note that the game is only localized in German.

A sound is played when the task is presented and can be repeated
whenever the user clicks the Play button. A question based on
the task type and 2 or 4 answer options appear (Table 1). The
cochlear implant recipients must select an answer to continue.
After selecting an option, a notification appeared (compare with
Figure 2D) indicating if the given answer was correct or
incorrect. Each task type dynamically selects training items
from a preconfigured pool of sound and speech assets to meet
the estimated competence level of the cochlear implant recipient.

The preconfigured pool holds additional (manually added and
semiautomatically generated) meta-information for each sound
and speech asset, which is used by the tutor model to meet the
estimated competence level. To enable the tutor model to
generate diverse task difficulties, 1053 audio assets with
meta-information were created. Multimedia Appendix 1 provides
a detailed description of the selection parameters used to
determine the difficulty of a sound asset. A single default
background noise was created to raise the difficulty of tasks.

Table 1. Single-choice quiz task types (compare with Figure 1).

Options (response)Question (stem)Task type

A: “Yes”; B: “No”“Did you hear anything?”SPa

A: “Yes”; B: “No”“Does the sound fit to this category: [category]?”SCb

A: “Yes”; B: “No”“Are the two sounds the same?”CDc

A: “Yes”; B: “No”“Are the two sounds the same?”VDd

A: “Yes”; B: “No”“Are the two words the same?”WDe

A: “[word1]”; B: “[word2]”; C: “[word3]”; D: “[word4]”“Which word did you hear?”WIf

A: “[sent.1]”; B: “[sent. 2]”; C: “[sent. 3]”; D: “[sent. 4]”“Which sentence did you hear?”SIg

aSP: sound perception.
bSC: sound categorization.
cCD: consonant differentiation.
dVD: vowel differentiation.
eWD: word differentiation.
fWI: word identification.
gSI: sentence identification.

Tutor Model
Whenever a task (Figure 2C) is presented to the learner, the
tutor model dynamically creates it in 3 steps. The initial step
involves determining the appropriate task type to choose. Our
goal for this decision is to focus to some degree on the weakest

competencies for rehabilitation reasons but avoid, for
motivational reasons, a pure concentration on them. The decision
algorithm is based on the utility theory [46]. Hence, it can be
classified as a utility-based algorithm [47]. In a nutshell, such
decision algorithms score all possible options and select the
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highest-rated one [47]. In this scenario, the system must decide
between 7 different task types. The utility of each task type is
calculated based on 3 criteria (Textbox 2). The criteria were
weighted differently to select the task types in a nonuniform
way and yet provoke a minor focus on the weaker competencies.

The second step is to generate a target task difficulty based on
the estimated subcompetency level of the cochlear implant
recipient, which is addressed by the selected task type (compared
with Figure 1). This is achieved by converting the current
probability distribution of the related observable variable from
the target task type into a normalized scalar value and using
this value further as a target task difficulty (eg, the target task
type is “sound perception,” so the target task difficulty is
calculated based on the probability distribution of the observable
variable “sound perception”). The third step is to generate a
task according to the task type definitions and the generated
target task difficulty. For example, suppose we would like to
generate a task of the task type “sound perception” with a

specific target task difficulty. In that case, the algorithm must
find a sound asset of type “sound” whose loudness, recurrence,
and concreteness values fit the target difficulty level (compare
with Table 1). Therefore, each key and distractor sound asset
combination in a preconfigured task pool is a possible task. This
selection algorithm for key and distractor sound assets is also
based on the utility theory. Hence, the selection algorithms score
all possible tasks based on the given sound asset parameters in
the preconfigured task pool. The task with the closest score to
the target difficulty is the best selection for the cochlear implant
recipient.

As mentioned earlier, after a cochlear implant recipient
completes a task, its individual Bayesian network gets updated
according to the task result. In this manner, the cochlear implant
recipients practice within a training loop, wherein with each
new task outcome, the estimated levels of competence should
progressively align more closely with the actual competence
level of the recipients.

Textbox 2. Decision algorithm scores.

Task-type-repetition-score

Higher score for task types with a low number of tasks within the last 30 tasks.

Competence-weakness-score

Higher score for task types that target weaker observable variables.

Right-wrong-ratio-score

Higher scores for task types with the lower correct or incorrect results in a row.

System Architecture and Serious Game Design
To practice tasks, a serious game in the form of a progressive
web application was developed using an HTML5 framework
to support current iOS and Android devices and their major
browsers: Safari and Google Chrome. The user progress within
the serious game was forwarded to a Java-based
pseudonymization service (see the Data Collection section),
which forwarded only the required parameters to a
Node.js-based recommendation service, which implemented
the described tutor model. The progressive web application
contains 2 game modes: a story-driven approach (story mode)
and a simple training mode (quick training mode). The story
mode embeds the tasks into a graphic novel where the story is
driven through dialogues and decisions (compare with Figures
2A and 2B). The story is about a group of amateur theater
actresses who perform at several locations. Unfortunately, many
things go wrong, so conflicts and absurd social situations
happen. The player slips into the role of one of the actresses
and tries to handle these conflicts between the protagonists by
choosing dialogue answers wisely. There is no penalty for wrong
answers. In the end, all story branches merge to a happy ending.
We selected this meta-story because it allowed us to include
different hearing sensation scenarios (crowded places,
countryside, dialogue situations, restaurants, etc) into 1 story.
The story mode contains an introductory chapter (“initial
analysis”) and 9 story chapters with 15 protagonists, 12

locations, and a playtime of approximately 1 hour. Each chapter
contains 10 tasks. To avoid distractions from the game flow,
the preconfigured asset pools of these tasks were filled with
items related to the story and dialogues at this moment. The
quick training mode repurposes the existing task types and
initiates a session consisting of 10 consecutive tasks, without
any story content in between. Hence, only elements in type C
and D in Figures 2C and 2D, respectively, were used. The main
goal of this mode was to achieve as many correct answers as
possible. The preconfigured pools of the quick training mode
are filled with all available sound and speech assets from the
story mode. After a chapter in the story mode or a quick training
session is finished, the cochlear implant recipient returns to the
main menu and can decide to play another chapter in the story
mode or quick training session. Both modes provide feedback
to the users through the responses of the protagonists, the story
flow, and via an in-application notification system (compare
with Figure 2D at the top of the screen). The progressive web
application and all tasks support the German language
exclusively.

Assessment Delivery and Evaluation
The study design and evaluation approach addressed 3 main
aspects: structure, process, and outcome [48]. In addition, system
functionality, user perspective, and organizational context were
considered [48]. Figure 3 illustrates the study timeline.
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Figure 3. Study design inclusive timeline. UX: user experience.

Ethical Considerations
Following institutional and regulatory guidelines of the
University Hospital Düsseldorf, all research involving human
subjects must undergo an ethics review to protect participants’
rights and welfare. This review process assessed the ethical
aspects of the research, including informed consent, risk
minimization, and confidentiality. Ethics approval for this
project was obtained from the ethics committee at the University
Hospital Düsseldorf (study number 2020-880 [49]). Before the
study, all patients received detailed information regarding its
objectives, methods, and possible risks. All participants provided
informed consent, as required, for the primary data collection
and any subsequent secondary analyses. The monitoring of the
use of the progressive web app and the evaluation process were
ensured to comply strictly with the European Union (EU)
General Data Protection Regulation (GDPR). To ensure this,
each data point was pseudonymized immediately after an
automated observation was tracked. This process is described
in the Data Collection section.

Participants
The evaluation of the intelligent tutoring system started with
the recruitment of study probands. All probands are in a lifelong
rehabilitation program at the Department of
Otorhinolaryngology at the University Hospital Düsseldorf,
covered by the German statutory health insurance. After
preselection by the therapists (according to inclusion and
exclusion criteria defined in the research protocol [49]), the
probands were asked if they would like to participate in this
study voluntarily and without valuable consideration. The team
reached out to 34 persons. Due to diverse reasons (eg, lack of
time, interest, and technical problems), the data of 23 cochlear
implant recipients (20 women and 3 men) were collected during
a training period of 4 weeks. The age of the recipients ranged
from 20 to 39 years in 3 individuals; 40 to 59 years in 10
individuals; and ≥60 years in 10 individuals (mean 54, SD 14.68
y). All participants spoke German fluently (22 had German as
their mother tongue). The group consisted of 35% (8/23) persons
with a single-sided cochlear implant and 65% (15/23) with
bilateral cochlear implant care. 39% (9/23) persons in the cohort
activated their cochlear implant <4 years ago. 65% (15/23)
participants said that they usually wear their cochlear implant
for more than 12 hours per day, 21% (5/23) stated 9 to 12 hours
per day, and 13% (3/23) between 5 and 8 hours per day. None
of the participants received any other treatment during the 4
weeks. The system or the researchers did not interfere with

notifications, reminders, or encouragements to motivate the
participants to use the system in these 4 weeks. We conducted
audiometric measurements on 22 (95%) patients at the start of
the testing phase. For side-specific pure-tone audiometry, the
mean value on the cochlear implant-fitted side was 32 (SD 7)
dB hearing level. In the Freiburg Monosyllabic Speech Test
(subset monosyllabic words), at 65 dB sound pressure level,
patients correctly repeated with a mean of 53% (SD 28%) of
words. At the 80 dB sound pressure level, the average was 69%
(SD 24%). More details will be provided in an upcoming paper
examining a clinical trial in detail.

Procedure
Before the 4-week training started, each cochlear implant
recipient had a 60-minute appointment. At the beginning of this
meeting, they installed the progressive web application on their
mobile device (“bring your own device” concept), if necessary,
with the help of their therapist. After a brief introduction by
their therapist on how to start and interact with the progressive
web application, the participants played the initial chapter,
referred to as the “initial analysis.” This introductory chapter
served 2 main purposes. First, the cochlear implant recipient
became familiar with the application’s user interface. Second,
the results of the tasks within this chapter were used to select
one out of 7 preconfigured competence profiles (also known as
stereotype modeling [27]). The competence profiles were
defined by the clinical staff members based on their experience
in hearing therapy. We assumed that a well-selected
preconfigured competence profile would reduce the number of
tasks a cochlear implant recipient has to solve until the system
reaches a point where it properly approximates the recipient’s
real competence level. As such, this addresses the so-called cold
start problem [31]. This procedure also mimics an existing
routine in face-to-face settings, where the therapist gets a first
impression of a new patient by asking multiple basic questions.
Once the first chapter was finished, the cochlear implant
recipient could play each game mode (story or quick training)
as much as they wanted within the following 4 weeks. After the
training period, the cochlear implant recipient returned to the
rehabilitation station and answered a specifically created
questionnaire about the usability and user experience of the
aural rehabilitation application. As a final step, their account to
access the progressive web application was disabled.

The following evaluation focuses on the 4-week periods in
which the participants interacted with the training system and
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examines the behavior of the participants and response to the
training system to answer the introduced RQs.

Data Collection
During the 4 weeks, the task result and some meta-information
(eg, timestamp and cochlear implant recipient identifier) were
sent to a pseudonymization service whenever the cochlear
implant recipient finished a task within the progressive web
app. This service replaced the cochlear implant recipient
identifier with a pseudonym and forwarded the information to
the game service (an adaptation of the ADLETE Framework
[33]), which was performing the update of the competency
model as described in the Conceptual Assessment Framework
and Assessment Implementation section. In response to the sent
task result, the game service recommends the next task type
and difficulty level based on the updated competency model.
In the context of this study, the pseudonymization service acted
as a clinical data protection layer following the EU GDPR [50].

Statistical Methods
Our statistical approach comprises 3 parts. The first part is a
descriptive statistical analysis. It presents an overview of task
results using valid percentages, mean, SD, IQR, and median.
The second part is an inferential statistical analysis, which
illustrates the proportions of recommended task types and error
proportions among cochlear implant recipients. This includes
a chi-square goodness of fit test to check for nonuniform
distribution, a Q-Q plot, and a Shapiro-Wilk test for normality
distribution, followed by a Kruskal-Wallis test and a Dunn post
hoc test with an adjustment method, according to Holm [51],
to compare distributions) to compare distributions. The last part
is a generalized additive model (GAM) analysis [52]. This

analysis examines the behavior of the Bayesian network for
each cochlear implant recipient over time to answer RQ1 and
RQ2.

Statistical significance was set at P<.05. We use RStudio
2023.06.1+524 “Mountain Hydrangea” developed by Posit
Software, PBC for computations and visualizations and
Microsoft Excel (version 2019) for some of the descriptive
visualizations. Only the first 250 completed tasks were
considered for comparison because only 2 participants
completed more tasks (participant 1: 508; participant 2: 1024).

Results

This section presents the results using the 3 main sections
described in the Statistical Methods section: descriptive
statistics, inferential statistics, and the GAM analysis. In the
Discussion section, the connection between the results and RQs
will be drawn.

Descriptive Statistics
The 23 participants completed 2259 tasks (minimum: 3, RQ1:
32, median 70, mean 98.2, RQ3: 157.50, SD 79). In total, the
23 participants solved 2004 tasks correctly and 255 tasks
incorrectly (median correct/median incorrect: 65/8, arithmetic
mean correct/arithmetic mean incorrect: 87.1/11.1, min
correct/min incorrect: 3/0, max correct/max incorrect: 229/40).
The overall arithmetic mean of the incorrect answer proportion
was 9.5%. Figure 4 presents the task type distributions of each
participant and allows a comparison between them. All
participants received a pseudonym from A to W. The total
number of fulfilled tasks is stated in round brackets below this
identifier.

Figure 4. The figure shows the total number of tasks per task type and the distribution of task types as percentages for each participant. The task types
are visualized in different colors. The participants are anonymized using the letters A to W.

The system also tracked the total playtime within the 4 weeks.
This can be summarized as follows: average: 159, SD 106;
range 7-376 minutes.

Inferential Statistics

The result of the Chi-Square Goodness of Fit test (χ2
6=86.7;

P<.001) allowed us to reject the null hypothesis that all task
types were uniformly distributed. This confirmed a first
assumption that each participant’s recommended task type
proportion distribution was nonuniform, as described in the
Tutor Model section. To further investigate the differences

between the recommended task-type proportions, we performed
a Kruskal-Wallis test because we met the assumption for it by
checking a Q-Q plot and performing the Shapiro-Wilk test
(P<.001), both indicating a nonnormal distribution. The null
hypothesis of the Kruskal-Wallis test could be rejected (P<.001),
meaning that the medians of the recommended task-type
proportions were different. The result of the post hoc Dunn test
identified 3 groups, A, B, and C, which shared a median from
a similar distribution. A compact letter display format (Figure
5) was used to visualize this. The analysis shows that the training
system recommended specific task types for the participating
cochlear implant recipients more likely in the following grouped
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order—group A: “consonant differentiation,” “vowel
differentiation,” and “word identification”; followed by group
C: “sound categorization” and “sound perception” and group
B: “sentence identification” and “word differentiation.” The
resulting analysis also indicates that the system did not

recommend the task types “sentence identification” and “word
differentiation” for all cochlear implant recipients in the same
way, compared with “sound categorization” or “vowel
differentiation,” where the variance is higher.

Figure 5. Difference between task-type recommendation proportions, including identified groups (groups A-C).

Figure 6 gives an overview of the correct and incorrect answers
from the recommended tasks. To further investigate the error
proportions of each cochlear implant recipient based on the
recommended task types, we performed a Kruskal-Wallis test
because we met the assumption by checking a Q-Q plot and
performing a Shapiro-Wilk test (P<.001) indicated a nonnormal
distribution. With the result of the Kruskal-Wallis test (P<.001),
we could reject the null hypothesis, which indicated that the
medians of the error proportions from the task types were not
equal. The result of the post hoc Dunn test identified 3 groups,

A, B, and C, which shared a median from a similar distribution.
To visualize this, a compact letter display format was used.
Group C (“sound categorization”) showed the highest error
proportion with a high variance between the cochlear implant
recipients. Group A (“consonant differentiation,” “sound
perception,” and “vowel differentiation”) showed a lower error
proportion compared with group C but also showed a higher
variance among the cochlear implant recipients, especially
“vowel differentiation.”

Figure 6. (A) Total number of tasks answered correctly or incorrectly per task type. (B) Difference between error proportion medians, including the
identified groups.

GAM Analysis
Figure 7 shows the estimated competence level over time (ie,
tasks) for each cochlear implant recipient for the overall
competence hearing and all observable variables (compare with
Figure 2). The starting position for each competence depends
on the selected initial competence profile for the cochlear
implant recipient. In Figure 7, this is visible because the starting

points of each plot are grouped around initial starting values.
A GAM analysis [52] for each competency was performed, and
the resulting model (blue dotted line) and the CI (gray area)
were plotted. These plots showed that the individually updated
Bayesian networks converge over time by incorporating the
produced task results (evidentiary arguments) from the 7
different task types for each cochlear implant recipient. The
GAM analysis indicated that the system updates the
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competencies quicker in the beginning (strong gradient)
compared with the end (flatted curve). You can reflect on this
behavior by comparing competency based on the error
proportions Figure 6 with the additive model analysis Figure 7.
Suppose you compare, for example, the estimated competence
“sentence identification,” which has a low error rate Figure 6,

with the additive model analysis of the competency “sentence
identification” Figure 7. The additive model analysis of
“sentence identification” showed a strong gradient in the
beginning and flattened over time. Doing so for the competence
“sound categorization” revealed the opposite behavior.

Figure 7. Comparing the estimated competence level of each cochlear implant recipient over time of completed tasks.

Discussion

Overview
The results were generated by 23 adult cochlear implant
recipients participating in this study. The average age of the
cohort was 54 years; approximately 60% of them activated their
cochlear implant ≥4 years ago. Therefore, the cohort comprised
experienced cochlear implant recipients. The GAM analysis of
2259 task results (including a maximum of the first 250 tasks
from each participant) indicated that the system adapted to the
estimated competency levels of the cochlear implant recipients
more quickly in the beginning than at the end. Compared with
a uniform distribution of all task types, the recommended task
types differed, indicating that the system selected specific task
types for each patient. This was underlined by the identified
categories for the error proportion of the task types. The
following discussion connects the design and development
process of the game-based, adaptive auditory training with the

results presented by the feasibility study to answer the 3 main
RQs.

RQ1: How Can an Intelligent Tutoring System
Estimate a Cochlear Implant Recipient’s Current Level
of Language Comprehension?
Following the suggestions of the ECD framework, a conceptual
model that describes the language comprehension competencies
and their interdependencies was designed. Our developed model
aligns with previous findings like Erber’s hierarchy of listening
[53] or the developed model used within the auditory training
Train2hear [54].

We transformed our model into a machine- and
human-interpretable probabilistic learner model (Bayesian
network) to estimate the subcompetency levels of the
competence language comprehension for each cochlear implant
recipient. Seven single-choice task types (“sentence
identification,” “word differentiation,” “word identification,”
“consonant differentiation,” “vowel differentiation,” “sound
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categorization,” and “sound perception”) were developed that
elicit a task result that incorporates evidence about the levels
of the different language comprehension competencies. This
evidence was used to update the learner model. This approach
aligns with the suggestion from the ECD framework [32] and
shows that this framework is applicable in the context of hearing
rehabilitation. The developed task types empathize with already
developed exercises from other similar computer-based auditory
training software [14,40,54-56].

In Figure 7, we demonstrated how these Bayesian networks
from the cochlear implant recipients converge over time by
incorporating the produced evidence from different task types.
A GAM analysis was used to visualize and reflect on the training
system’s behavior. The calculated model (blue dotted line in
Figure 7) indicates that the system updates the competencies
quicker in the beginning (strong gradient) compared with the
end (flatted curve) overall cochlear implant recipients in general.
This matches with the error proportions in Figure 6 for the
various task types, which also show low error proportions in
general. On the one hand, this might indicate that their initial
estimated competence level based on the “initial analysis” (see
the Assessment Delivery section) did not fit their actual
competence level. On the other hand, the generated tasks may
not have met the correct difficulty level (compare further with
RQ2). However, the visualization is evidence that the system
adapted itself according to the behavior of the cochlear implant
recipients and their competence level over time. Hence,
compared with other adaptive computer-based auditory training
systems [40,41,43,54,56], the illustrated use of a Bayesian
network allowed us to estimate a cochlear implant recipient’s
current level of language comprehension based on the required
subcompetencies and their interdependencies.

RQ2: How Can an Intelligent Tutoring System
Generate Tasks for Cochlear Implant Recipients That
Match Their Current Level of Language
Comprehension?
The definition of task types serves as a blueprint to generate
tasks. The task types were designed to use the individual
estimated competence level to select the appropriate target key
and distractor options from sound asset pools with a utility-based
algorithm. To examine the system behavior, we analyzed each
cochlear implant recipient’s first 250 fulfilled tasks and saw a
strong variation between the fulfilled tasks (SD 79). However,
the median of 70 indicates that 50% of all participants finished
≥70 tasks. These results and the total playtime (mean 159 min)
already gave some evidence that cochlear implant recipients
were willing to interact for a longer period with such an
application. This finding is congruent with the results in the
study by Völter et al [54], which indicated a high adherence
rate for adaptive computer-based auditory training systems. We
would like to examine this and the reason for their behavior in
detail in an upcoming publication.

Our analysis of the recommendation system showed that the
chosen task types were not uniformly distributed. Our deeper
investigation revealed that “consonant differentiation,” “vowel
differentiation,” and “word identification” were more likely
chosen for the cochlear implant recipients (Figure 5).

Furthermore, the examined error proportions associated with
the 7 task types could be categorized into 3 groups (Figure 6).
These identified categories do not align with the discovered
categories from the recommended task-type proportions (Figure
5), which emphasizes the selection algorithm to consider
different parameters rather than solely relying on correct or
incorrect input. Figure 6 also indicates that the exercises were
too easy even when they became more difficult because the
error proportions were very low. Furthermore, there is a
difference in the error proportion of the task types, which
indicates that certain types (mainly “sound categorization”)
seem more difficult to answer correctly. There might be various
reasons for this result. For example, the task type “sound
categorization” might have been misinterpreted by the target
group, or the used sound assets did not meet the actual
competence level. Therefore, further investigation of the task
types and their difficulties would be a valid next research step.

RQ3: How Can an Intelligent Tutoring System Be
Embedded Into a Serious Game to Create an Adaptive
and Game-Based Auditory Rehabilitation Training?
We provided a detailed explanation of the conceptual and
technological approach for building an intelligent tutoring
system for aural rehabilitation, adhering to the recommendations
for defining the 4 main models of an intelligent tutoring system:
the domain model, learner model, tutor model, and interface
model [22]. The intelligent tutoring system was designed to
overcome two major requirements: (1) the so-called “cold start
problem” due to the lack of available data in advance [31] and
(2) the “explainable intelligence” due to ethical concerns in the
context of eHealth [25]. The cold start problem was addressed
using a Bayesian network as a learner model, designed based
on expert knowledge, so initial learner data were unnecessary.
In addition, the system can be explained by visualizing a
Bayesian network and its local conditional probability
distributions over time (Figure 7). This allows us to model each
individual cochlear implant recipient based on their input, which
stands in contrast to current common machine learning
approaches that try to find one categorization model based on
available data of a whole cohort (compare, eg, with the studies
by Leduc-McNiven et al [57] and Goumopoulos et al [58]).

Furthermore, this description thoroughly shows how to embed
this intelligent tutoring system via a task system into a serious
game. The developed serious game in the form of a progressive
web application supports 2 different game modes. The story
mode embeds the tasks into a graphic novel–like game
environment, while the quick training mode allows cochlear
implant participants to practice 10 tasks in a row in a
training-like environment. Hence, from a software architectural
point of view, an autonomously functioning task system enables
the generation of diverse scenarios by reusing identical task
types. With the dialogue-driven story mode, we followed the
initially stated argument that a serious game should allow
learners to experience the enjoyment of the future outcome of
their learning process [15]. Here, we allow the cochlear implant
recipient to experience participation in conversations even in
difficult situations (eg, at a restaurant, compare with parts A,
B, C, and D in Figure 2). Arguably, the story mode might miss
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key elements that would classify it as a serious game. However,
we emphasize the suggestion of the G, P, and S serious game
classification to distinguish between serious games with a
game-based gameplay component (strong goal oriented and rule
based) and a play-based one (indirectly measurable goals) [59]
and consider our serious game as a play-based one. It would be
interesting to examine the motivation and flow experience of
the cochlear implant recipients of serious games following a
more play-based gameplay approach in further studies.

Unlike existing training platforms, which primarily analyze the
quantity and type of errors [13,14,40,41,54] (as detailed in the
Aural Rehabilitation and Existing Auditory Training section),
our approach allows us to use the learning trajectory of each
hearing competency and their interdependencies to recommend
the next suitable training task for a cochlear implant recipient.
By presenting a way to integrate such a training system into a
serious game, we address the call from a recent literature review
on the personalization of serious games to explore methods of
incorporating learning progress into intelligent tutoring systems
rather than relying solely on task results [60].

Limitations
First, compared with studies in educational science where the
ECD framework originated, the total number of participants in
this study was relatively low because of the available funding
for the conducted feasibility study. Hence, cautious
generalization of the results is required. Nevertheless, the results
presented in this publication are a valuable base for a formal
sample size calculation (eg, Cochran’s sample size formula) for
future studies. Second, only cochlear implant recipients from
the Department of Otorhinolaryngology at the University
Hospital Düsseldorf volunteered in this study, raising the
possibility of an existing self-selection bias. This bias might
also include side effects from different types of cochlear implant
sound processors used by the cochlear implant recipients.
Finally, we did not evaluate the competencies of the
participating cochlear implant recipients with another
measurement instrument due to the lack of standardized tests
for the specific subcompetencies. The study was conducted to
answer specific RQs and comply strictly with the EU GDPR.
Hence, further post hoc analysis can only be applied to the
specific tracked variables defined at the beginning of the project.
Therefore, for example, questions regarding the preferred game
mode of the cochlear implant recipients must be answered in
future studies.

Future Work
While the presented results allow a system-wise interpretation
of the cochlear implant recipient’s input, future studies should
focus on observing the cochlear implant recipient’s use behavior.
This also includes the responses of cochlear implant recipients

to specific game mechanics (eg, the preferred game mode) or
interaction time. In addition, since the results indicated that the
given tasks seemed to be easily solvable by the participating
cochlear implant recipients, further evaluation is required to
find out if the selected evidentiary arguments of the developed
task types hold in general for cochlear implant recipients. In
addition, examining the long-term effects of adaptive and
game-based auditory training in the rehabilitation process of
cochlear implant recipients versus traditional rehabilitation
techniques would be very valuable.

For further research from a technological perspective, it might
be interesting to investigate ways to use the potential of
Bayesian networks to create synthetic data, as [25] suggested
via agent-based simulations [58,60] for early development
stages. Because the defined Bayesian network describes a
competency ontology, future developments might consider
coupling them with game mechanic ontologies illustrated, for
example, in the study by Goumopoulos and Igoumenakis [61].
Such a coupling might be possible using generative artificial
intelligence (eg, [62]) for immediate on-demand generation of
training tasks that meet task difficulty and game mechanic
requirements. Hence, a personalized recommendation approach
similar to the one presented in this paper might lead to prompt
generators that will reduce the cost of training content creation
significantly.

Besides these technological perspectives, we already see a
shortage of specialized therapists and trainers supporting adult
cochlear implant recipients in Germany (compare with the study
by Völter et al [54]). With the foreseeable increase in the number
of adult individuals with cochlear implants, new ways of hearing
rehabilitation are needed to address this growing gap between
both groups.

Conclusions
This is the first attempt to map cochlear implant recipients’
language comprehension competencies using a Bayesian learner
model for an intelligent tutoring system in cochlear implant
rehabilitation. We integrated this system into an adaptive,
game-based auditory rehabilitation training, addressing the need
for an explainable design and solving the cold start problem
owing to the lack of initial user data. A feasibility study with
23 cochlear implant recipients showed that the system adapts
to the estimated users’ competency levels. The task system
tailored tasks to each patient, as indicated by comparing error
proportions and GAM analysis. With this work, we contribute
and support the future game-based designs of computer-based,
intelligent cochlear implant rehabilitation therapies; general
hearing therapies; and similar fields in the eHealth context,
where the personalized adaptation of a training environment is
required to meet the needs of individuals.
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