Published on in Vol 10, No 3 (2022): Jul-Sep

Preprints (earlier versions) of this paper are available at, first published .
Effectiveness of Using Augmented Reality for Training in the Medical Professions: Meta-analysis

Effectiveness of Using Augmented Reality for Training in the Medical Professions: Meta-analysis

Effectiveness of Using Augmented Reality for Training in the Medical Professions: Meta-analysis

Original Paper

1Faculty of Computing and Informatics, Universiti Malaysia Sabah, Labuan, Malaysia

2Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia

3Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar, Malaysia

4Department of Computer Science, King Saud University, Riyadh, Saudi Arabia

5Department of Electrical & Computer Engineering, Western University, Ontario, ON, Canada

6Department of Computer Engineering, Future University, Khartoum, Sudan

7Department of World Languages, Greece Central School District, New York, NY, United States

Corresponding Author:

Yahia Baashar, MSc

Faculty of Computing and Informatics

Universiti Malaysia Sabah

751 Bandar

Labuan, 88400


Phone: 60 0102207514


Background: Augmented reality (AR) is an interactive technology that uses persuasive digital data and real-world surroundings to expand the user's reality, wherein objects are produced by various computer applications. It constitutes a novel advancement in medical care, education, and training.

Objective: The aim of this work was to assess how effective AR is in training medical students when compared to other educational methods in terms of skills, knowledge, confidence, performance time, and satisfaction.

Methods: We performed a meta-analysis on the effectiveness of AR in medical training that was constructed by using the Cochrane methodology. A web-based literature search was performed by using the Cochrane Library, Web of Science, PubMed, and Embase databases to find studies that recorded the effect of AR in medical training up to April 2021. The quality of the selected studies was assessed by following the Cochrane criteria for risk of bias evaluations.

Results: In total, 13 studies with a total of 654 participants were included in the meta-analysis. The findings showed that using AR in training can improve participants' performance time (I2=99.9%; P<.001), confidence (I2=97.7%; P=.02), and satisfaction (I2=99.8%; P=.006) more than what occurs under control conditions. Further, AR did not have any effect on the participants’ knowledge (I2=99.4%; P=.90) and skills (I2=97.5%; P=.10). The meta-regression plot shows that there has been an increase in the number of articles discussing AR over the years and that there is no publication bias in the studies used for the meta-analysis.

Conclusions: The findings of this work suggest that AR can effectively improve performance time, satisfaction, and confidence in medical training but is not very effective in areas such as knowledge and skill. Therefore, more AR technologies should be implemented in the field of medical training and education. However, to confirm these findings, more meticulous research with more participants is needed.

JMIR Serious Games 2022;10(3):e32715



Augmented reality (AR) is an interactive technology that uses persuasive digital data and real-world surroundings to expand the user's reality, wherein objects are produced by various computer applications [1,2]. Its use has become a widely debated topic among the medical community and has resulted in fertile ground for new types of research [3]. As a result, the health care sector and policy makers have been immediately able to realize the benefits of applying AR technologies, with education and training being noticeable applications of AR in medical settings [4-6]. However, since AR technologies enable learners to interact and visualize in 3D representations, medical professionals must have a vast amount of technological knowledge to efficiently adapt AR in practice [4,7,8]. Apart from the enormous benefits of AR for medical professionals, AR is also emerging as a useful guide for patient education and training, allowing physicians to clarify different surgical procedures and the functions of certain medications for patients and to explain new therapies in a more visual way [9-12]. Furthermore, AR can significantly improve a patient’s experience and advance knowledge on complex issues, and these benefits contribute and lead to better health outcomes [6].

There are many applications of AR in medical settings. Kamphuis et al [13], for example, reported that AR has reached a mature level of use in the field of anatomical engineering, for various technologies, and in physiological training. Further, surgical training has also been revolutionized by AR. Although integrating virtual reality (VR) and AR training into medical school and residency programs would necessitate prototype testing and entirely new teaching methods, AR has the potential to completely transform medical and science training [14-16]. Early adopters of AR innovations in medical training have noted several benefits, including the ability to simulate real-life scenarios without risking real-world consequences. Despite these advancements, there is still a lack of published experimental and observational work on the effectiveness and usefulness of AR in medical training and education [16].

In their work, Eckert et al [17] provided an overview of the development of AR applications in health care from 2012 to 2017. According to their findings, despite an increasing number of publications on AR in medicine, there have been no significant clinical trials on AR effectiveness. However, display-related domains tended to receive more research attention than other AR interventions.

The literature shows some discrepancies in the effectiveness of AR in medical training. To date, most of the meta-analysis research on the efficiency of VR and virtual patients in medical education has been carried out by Chen et al [18] and Kononowicz et al [19]. Their research has inspired this study, and there is some thematic overlap, but they presented their findings in a different way. However, to the best of our knowledge, no meta-analysis has been conducted to assess AR in medical training, with the exception of 2 studies—those by Williams et al [20] and Barsom et al [16], which conducted a systematic review with no meta-analysis. Therefore, filling this gap represents a significant addition to the literature. The primary goal of this study is to perform a meta-analysis on the efficacy of AR in 5 areas of learning and training. These include participants’ skills (eg, the ability to illustrate a certain process), knowledge (eg, the ability to understand a certain concept), confidence (eg, the ability to learn certain content with self-confidence), performance time (eg, the amount of time spent on a certain task), and satisfaction (eg, the level of learning fulfilment for a certain AR intervention). The findings of this work have many implications for policy makers, patients, medical students, and professionals and for using AR technology to facilitate learning and training mechanisms in the medical field. This meta-analysis seeks to address the following research questions (RQs):

  • RQ1: What are the characteristics of studies using AR in medical training?
  • RQ2: What kind of AR interventions were used to assist with medical training?
  • RQ3: Does the use AR have an effect on medical training when compared to other methods?


The Methods section discusses the approaches used to obtain specific publications as well as the constraints and eligibility requirements that were used [21]. Following that, an overview of the standards used to interpret the studies and associated variables is provided. This meta-analysis was carried out in compliance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [22]. A checklist of all PRISMA items is presented in Multimedia Appendix 1.

Eligibility Criteria

The meta-analysis included studies that (1) were published between 2013 and April 2021, (2) were written in English, and (3) primarily focused on AR for learning and training. Further, we excluded studies that (1) used other virtual platforms, such as VR and virtual patients, and (2) had no experimental data. However, based on the PICO (Population, Intervention, Comparison, Outcomes) framework, our final analysis incorporated various trials, including those with randomized controlled and mixed designs. Textbox 1 illustrates all of the PICO elements used for the inclusion criteria.

PICO (Population, Intervention, Comparison, Outcomes) framework.

Criteria and descriptions

  • Population
    • Sex (male or female)
    • Age (>15 years)
    • Target group (medical professionals, residents, patients, or students)
  • Intervention
    • All types of augmented reality technology used in training or learning.
  • Comparison
    • Augmented reality, nonaugmented reality, and conventional methods (eg, paper or pen, classes, simulations, or presentations)
  • Outcomes
    • Knowledge
    • Confidence
    • Skills
    • Performance time
    • Satisfaction
Textbox 1. PICO (Population, Intervention, Comparison, Outcomes) framework.

Information Source and Search Strategy

We conducted a web-based literature search in the Cochrane Library, PubMed, Embase, Web of Science and Google Scholar databases from February to April 2021. We also manually checked the reference lists of the eligible studies to identify and acquire additional relevant publications. We used the following set of keywords, terms, and logical operators: “augmented reality” OR “AR” OR “mixed reality” OR “patient simulation” AND “medical training” OR “medical education” OR “health professions training.” Some of the search strategies and terms used are presented in Multimedia Appendix 2. It is worth mentioning that the search strategies were slightly modified to suit each web-based database. EndNote X9 (Clarivate) software was used to manage and import the selected documents and to remove duplicates. This process was carried out by 2 authors (YB and GA) of this study.

Data Extraction

Data were placed into an extraction spreadsheet by using Microsoft Excel 2019. From each of the studies, information was extracted based on the study characteristics, designs, and participants. These data included the names of authors, the years of the studies, the locations of the studies, sample sizes, participant types, study designs, and interventions and outcomes. EndNote X9 was also used to obtain some publication data, such as titles, publishers, URLs, digital object identifiers, page numbers, issue numbers, and volume numbers. The process of data extraction was initially performed by 2 authors (HA and A Alwadain) and was then validated by another 2 authors (WNWA and LFC).

Risk of Bias Assessment

The quality of the studies was assessed by 2 authors (AB and A Alghail). We followed the criteria of the Cochrane Handbook for Systematic Reviews of Interventions [23] in the risk of bias assessment process. These include 7 domains that correspond to a particular kind of bias. Each domain was given a score (a “high risk,” “low risk,” or “unclear risk” of bias), and any disagreements among coauthors were settled via consensus.

Statistical Analysis

RevMan 5.4 (The Cochrane Collaboration) software was used to perform the risk of bias assessment; different scales were used by different authors to measure the outcomes; therefore, raw data could not be compared directly. Thus, the R 4.0.2 (R Foundation for Statistical Computing) software was used to transform raw data, so that STATA 14.0 (StataCorp LLC) could be used to run the analysis directly. The metacont package on R was used to transform the data on the sample sizes, SDs, and means of the control and AR groups. Data on the sample sizes, means, and SDs of only the AR groups were transformed by using the metamean package. Only 1 study [24] recorded the sample size and the proportion of participants on whom AR had a positive effect. The effect sizes and CIs were generated by using the two different packages. STATA 14.0 was used to generate the forest plot for each outcome, which used the transformed data (effect size and CI), via the metan command. The statistical heterogeneity among the selected studies was measured by using I2 in each analysis and a 5% significance level. The random effect model was selected for the analysis carried out because the true effect sizes underlying all studies were stochastic.

Study Selection

From our initial search of 5 potential databases, we found a total of 1832 records. We identified a total of 1839 records, including relevant reference lists (n=7). Duplicate records (973/1839, 52.9%) were removed. Following that, a total of 866 of the 1839 (47.1%) studies were screened based on their titles, abstracts, and keywords, and 798 were excluded after applying the eligibility criteria. A total of 68 studies were downloaded and evaluated via full-text screening, of which 55 were excluded for various reasons (Figure 1). Finally, 13 studies with a total of 654 participants were eligible for the meta-analysis; 2 studies used the same set of participants for both the control and AR groups [25,26], while another 6 studies [27-32] that also measured both the control and AR groups divided the sample size.

Figure 1. Study screening and selection flowchart. VR: virtual reality.
View this figure

Study Characteristics

As presented in Table 1, the trials of the selected studies were performed in the following ten countries: Germany [27,28,30], the United States [24,31], the United Kingdom [33], Canada [34], Italy [35], Sweden [26], Finland [32], Switzerland [29], Spain [36], and South Korea [25]. Furthermore, 10 of the 13 studies, adopted a randomized control trial [24,26-29,32-36], 2 studies had a mixed design [30,31], and 1 study used a cohort approach [25]. The number of participants in the studies ranged between 4 and 372. With regard to these participants, 5 trials recruited medical and nursing students [25,27,28,30,31]; 2 trials involved pediatric and psychiatry residents [26,29]; 1 trial recruited visitors to a center [32]; and the remaining trials (n=5) included multiple participants, such as physicians, registered nurses, technicians, residents, students, clinicians, clients, hosts, and paramedics [24,33-36].

In recent years, the use of AR in the medical field has attracted the attention of academics and researchers, as evidenced by the increasing number of publications devoted to AR. This is demonstrated by the fact that 8 of the 13 studies were conducted between 2019 and 2021. The characteristics of the selected studies, including the outcome measures, interventions, and types of participants, are shown in Table 1. Additional details regarding the AR and control groups are presented in Multimedia Appendix 3.

Table 1. Characteristics of the selected studies.
Author, yearCountryBrief descriptionParticipantsSample size, n (number of participants in each study group)Study designOutcomes
Albrecht et al, 2013 [27]GermanyComparing the effect of MARa to that of a textbook, with consideration for essential psychological qualitiesStudents10 (6 and 4)RCTbSkill and confidence
Balian et al, 2019 [24]United States of America Testing the feasibility of an ARc training system (Microsoft HoloLens) for CPRd among medical professionalsPhysicians, nurses, and technicians51 (N/Ae)RCTPerformance time and satisfaction
Ingrassia et al, 2020 [35]ItalyAssessing the feasibility of an AR prototype for BLSDf trainingPhysicians, nurses, and residents26 (N/A)RCTConfidence and satisfaction
Kim et al, 2021 [25]KoreaEvaluating the usability and feasibility of AR (smart glasses) for nursing training skillsStudents30 (N/A)CohortSkill, performance time, satisfaction, and knowledge
Kotcherlakota et al, 2020 [31]United States of AmericaAssessing the use of AR (clinical simulation) in the management of pediatric asthma outcomesStudents21 (12 and 9)MixedConfidence and satisfaction
Muangpoon et al, 2020 [33]United KingdomProposing an AR system (Microsoft HoloLens, 1st Gen) to improve the learning and teaching of DREgClinicians and students19 (N/A)RCTSkill, knowledge, and satisfaction
Noll et al, 2017 [28]GermanyAssessing learning success by comparing learners with and without MARStudents44 (22 and 22)RCTKnowledge and skill
Pantziaras et al, 2015 [26]SwedenEvaluating the impact of virtual patient training on the knowledge of stress disorder management and symptomsResidents32 (N/A)RCTKnowledge
Savela et al, 2020 [32]FinlandInvestigating the features of MAR for learning and sociabilityVisitors372 (231, 71, and 71)RCTKnowledge and satisfaction
Schiffeler et al, 2019 [30]GermanyAssessing the effects of AR on interaction and communicationStudents13 (7 and 6)MixedKnowledge
Siebert et al, 2017 [29]SwitzerlandEvaluating whether the adaption of AR glasses with AHAh guidelines can reduce the time and deviation of essential lifesaving exercises throughout pediatric CPR when compared to those of PALSiResidents20 (10 and 10)RCTPerformance time and confidence
Vidal-Balea et al, 2021 [36]SpainEvaluating MAR games that teach and train people how to use pediatric medical applications (the games also monitor training progress)Clients and hosts4 (N/A)RCTPerformance time
Wang et al, 2017 [34]CanadaDeveloping a telemedicine platform using AR (Microsoft HoloLens) to improve medical training remotelyParamedics and students12 (N/A)RCTPerformance time and satisfaction

aMAR: mobile augmented reality.

bRCT: randomized controlled trial.

cAR: augmented reality.

dCPR: cardiopulmonary resuscitation.

eN/A: not applicable.

fBLSD: basic life support and defibrillation.

gDRE: digital rectal examination.

hAHA: American Heart Association.

iPALS: pediatric advanced life support.

Risk of Bias

Figure 2 and Figure 3 present the risk of bias assessment, which was performed according to the Cochrane criteria. Of the 13 studies, 10 detailed randomized methods [24,26-28,30-33,35,36], while the rest of the studies (n=3) [25,29,34] reported no sequence generation methods. Only 3 trials reported concealment methods [25,32,34]. Furthermore, 3 studies reported dropouts [29,30,33] but did not go into detail about how they were handled. Due to the uniqueness of the intervention methods, no blinding methods were reported for participants in any of the trials. The blinding of assessors was used in 5 trials [26,27,29,35,36].

Figure 2. Risk of bias assessment of each selected study [24-36].
View this figure
Figure 3. Overall risk of bias assessment of the selected studies.
View this figure

Publication Bias

The most significant issue with meta-analyses is the possibility of bias and error arising from combining multiple studies, especially unrelated studies. Creating a funnel plot is one of the key methods used for testing common publication bias. The graphics in the funnel are obvious scatter plots for the effect size approximated in each selected study versus the unit of sample size reported in the studies [37]. If there is no bias, the graphic resembles an upside-down funnel. However, if a publication bias exists, the graphic should be asymmetric and distorted [38]. Figure 4 shows the funnel plot that we used to test for publication bias.

As can be seen in Figure 4, the 13 studies included in the meta-analysis are symmetrically placed on both sides of the vertical effect size line and are very close to the symmetrical and merged effect size lines. If there is no publication bias, studies should be distributed symmetrically on both sides of the vertical line depicting the merged effect size. If the studies are placed outside of the pyramid, they should be concentrated in the upper or middle parts of the plot. However, if there is a bias, most of the studies will be in the funnel plot's bottom part or in only 1 vertical line segment [39]. The effect sizes of the included studies are distributed in a symmetrical manner, with only 5 studies located outside of the pyramid. However, it is worth nothing that 4 of these studies are located in the upper part of the pyramid. This pattern shows that the studies included in this work have no publication bias.

As shown in Figure 5—the meta-regression plot—the true effect sizes between the control and AR groups are 1.8 for the 2013 study [27]; 0.9 for the 2015 study [26]; 2.2, 0.2, and −0.9 for the 2017 studies [28,29,34], respectively; 1.2 and 0.9 for the 2019 studies [24,30], respectively; 0.4, −1, 0.2, and 1.5 for the 2020 studies [31-33,35], respectively; and finally, −3.1 and 0.8 for the 2021 studies [25,36], respectively.

Figure 4. Funnel plot showing publication bias.
View this figure
Figure 5. Meta-regression plot showing the publication years.
View this figure

Results of the Meta-analysis

A meta-analysis was performed by using the data set in Multimedia Appendix 4 for each of the five outcomes (ie, knowledge [Multimedia Appendix 5], performance time [Multimedia Appendix 6], satisfaction [Multimedia Appendix 7], confidence [Multimedia Appendix 8], and skills [Multimedia Appendix 9]). The coding of the final analysis is also provided in Multimedia Appendix 10.


Only 6 of the 13 selected studies recorded knowledge as scores [25,26,28,30,32,33]. The total number of participants who measured their knowledge was 510. The findings from the plot (Figure 6) showed that there is no relationship between AR training and improvement in the participants' knowledge (Z=0.130; P=.90).

Figure 6. Forest plot showing the effectiveness of augmented reality on knowledge [25,26,28,30,32,33]. Weights are from the random-effects model. RR: risk ratio.
View this figure

A total of 4 studies used skill as the outcome measurement [25,27,28,33]. The total number of participants that participated in measuring skill was 103. The plot (Figure 7) revealed that there is no statistical relationship between AR training and participants’ skills (Z=1.668; P=.10). There is high heterogeneity among the studies.

Figure 7. Forest plot showing the effectiveness of augmented reality on skills [25,27,28,33]. Weights are from the random-effects model. RR: risk ratio.
View this figure

In total, 4 studies recorded confidence outcomes [27,29,31,35]. The total number of participants who measured their confidence was 77. There was a statistical relationship between AR training and participants’ confidence, as the P value was significant according to the plot (Z=2.363; P=.02; Figure 8).

Figure 8. Forest plot showing the effectiveness of augmented reality on confidence [27,29,31,35]. Weights are from the random-effects model. RR: risk ratio.
View this figure
Performance Time

Performance time was assessed as an outcome measure in 5 studies [24,25,29,34,36]. The total number of participants that participated in measuring performance time was 129. There was a statistical relationship between AR training and participants’ performance time because the P value was significant according to the plot (Z=4.596; P<.001; Figure 9).

Figure 9. Forest plot showing the effectiveness of augmented reality on performance time [24,25,29,34,36]. Weights are from the random-effects model. RR: risk ratio.
View this figure

A total of 7 studies reported participants’ satisfaction [24,25,31-35]. The total number of participants who measured their satisfaction was 543. There was a statistical relationship between AR training and participants’ satisfaction according to the plot (Z=2.760; P=.006; Figure 10).

Figure 10. Forest plot showing the effectiveness of augmented reality on satisfaction [24,25,31-35]. Weights are from the random-effects model. RR: risk ratio.
View this figure

Main Findings

The usefulness of AR simulation methods in medical training was evaluated in this meta-analysis. In terms of skill outcomes, AR training did not outperform other educational methods for medical training. A study on the use of AR in medical education found that students’ skills improved after the intervention [25]. In terms of skill performance scores and success rates, it was found that AR groups did not exhibit any statistical relationships, even though each of the trials that reported skills (ie, those included in our study) used different education and training methods for their control groups.

There was a statistical difference (P=.02) between the AR and control groups in terms of confidence. Participants' confidence was improved by AR when compared to that of participants in control conditions. It was found that AR training had a greater effect on participants’ confidence.

The I2 values reported throughout the Results section are very high, indicating that there was a huge level of heterogeneity between studies. In terms of knowledge outcomes, participants who underwent AR training did not outperform those who used other educational methods for medical training. However, a previous study that looked at how AR affects learning found that AR was more effective for knowledge retention [27] and that students are more likely to make connections between concepts when they are in an interactive learning environment. As a result, more research into the impact of AR on knowledge in medical training is needed in the future.

Between the control and AR groups, there was a significant difference in participants’ satisfaction (P=.006). Of the 7 studies that recorded satisfaction as an outcome, 4 [25,32-34] indicated partial satisfaction. Some participants remarked on how difficult it is for AR technology to affect user satisfaction. As a result, we believe that participants’ satisfaction with AR training may vary depending on technical factors. AR technology will be better able to satisfy users as the technology advances.

A meta-analysis of performance time was also carried out. The findings suggested that AR was more effective than other training methods at reducing performance time. However, we found that AR was more efficient than other methods in enhancing performance time. The observed heterogeneity could have been due to the various research designs and settings used in the selected studies, such as surgical projects, AR devices, and control group training methods. One study [36] on the efficiency of AR endoscopy simulation training analyzed performance time based on real-world data and found no significant difference between the AR and control groups, but the evidence quality was poor. Other studies that measured performance time as an outcome found that AR can assist operators in reducing performance time [24,25].

Strengths and Limitations

One of the main strengths of this work is being among the first meta-analyses to be conducted on the effectiveness of AR in medical training, which presents a significant contribution to the advancement of AR in the medical field. Furthermore, our work involved an assessment of 13 trials with a total of 654 participants from various countries.

Our work has some limitations as well. The first is that we only included articles that focused on AR as an intervention, which made it difficult to find a large number of studies. Second, some of the studies included in the review omitted information about allocation concealment, sequence generation, and blinding methods. Finally, the 13 trials we evaluated used different teaching and training methods for their control groups, which could lead to significant heterogeneity.


The effectiveness of AR training methods in the medical field was assessed in this work. The meta-analysis included 13 trials with a total of 654 participants that were completed between 2013 and 2021. In all trials, AR training was used as an intervention in AR groups, while conventional methods were used for control groups. Based on our findings, medical students' performance time, confidence, and satisfaction can be improved by using AR training and education methods. However, there was no statistical difference between the skills and knowledge that participants gained by undergoing AR training and those gained via conventional training methods. The use of AR should therefore be adopted in medical department training because of its significant effect on the performance time of participants. In general, AR should be used to expand knowledge and as a supplement to other simulation approaches to enhance clinical practice quality and safety. It is very noticeable that there are considerable gaps in the literature regarding the use of AR technology in medical training, and a limited number of studies exist, suggesting that further research efforts in this area are needed.


This research is supported by the Researchers Supporting Project (project number: RSP-2021/309), King Saud University, Riyadh, Saudi Arabia.

Authors' Contributions

YB conceptualized this meta-analysis. LFC and A Alwadain acquired funding. YB and GA conducted the investigation. YB, WNWA, GA, HA, A Alwadain, LFC, AB, and A Alghail contributed to the methodology. YB, HA, and A Alwadain were responsible for the resources used. YB was responsible for the software used. WNWA, HA, and A Alwadain supervised the meta-analysis. AB and A Alghail validated the meta-analysis. GA was responsible for data visualization. YB wrote the original manuscript draft. WNWA, GA, HA, A Alwadain, AB, LFC, and A Alghail reviewed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

None declared.

Multimedia Appendix 1

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist.

DOC File , 64 KB

Multimedia Appendix 2

Search strategies.

DOCX File , 16 KB

Multimedia Appendix 3

Augmented reality and control groups.

DOC File , 45 KB

Multimedia Appendix 4

The data set.

XLSX File (Microsoft Excel File), 13 KB

Multimedia Appendix 5


XLS File (Microsoft Excel File), 27 KB

Multimedia Appendix 6

Performance time.

XLS File (Microsoft Excel File), 27 KB

Multimedia Appendix 7


XLS File (Microsoft Excel File), 28 KB

Multimedia Appendix 8


XLS File (Microsoft Excel File), 27 KB

Multimedia Appendix 9


XLS File (Microsoft Excel File), 26 KB

Multimedia Appendix 10

R and Stata codes.

DOCX File , 13 KB

  1. Dickey RM, Srikishen N, Lipshultz LI, Spiess PE, Carrion RE, Hakky TS. Augmented reality assisted surgery: a urologic training tool. Asian J Androl 2016;18(5):732-734 [FREE Full text] [CrossRef] [Medline]
  2. Khor WS, Baker B, Amin K, Chan A, Patel K, Wong J. Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls. Ann Transl Med 2016 Dec;4(23):454 [FREE Full text] [CrossRef] [Medline]
  3. Zhu E, Lilienthal A, Shluzas LA, Masiello I, Zary N. Design of mobile augmented reality in health care education: A theory-driven framework. JMIR Med Educ 2015 Sep 18;1(2):e10 [FREE Full text] [CrossRef] [Medline]
  4. Blomqvist S, Seipel S, Engström M. Using augmented reality technology for balance training in the older adults: a feasibility pilot study. BMC Geriatr 2021 Feb 26;21(1):144 [FREE Full text] [CrossRef] [Medline]
  5. Malheiros O. Virtual reality and augmented reality as promoters of better health literacy: Analysing assertiveness, clear language, and positivity. In: Handbook of Research on Assertiveness, Clarity, and Positivity in Health Literacy. Hershey, Pennsylvania: IGI Global; 2022.
  6. Susilawati E, Johari A, Marzal J, Anggereini E. Effectiveness of multimedia e-book and augmented reality on knowledge and skill of health science students: A systematic review. Journal of Client-Centered Nursing Care 2022 May 01;8(2):99-110 [FREE Full text] [CrossRef]
  7. Hu MH, Chiang CC, Wang ML, Wu NY, Lee PY. Clinical feasibility of the augmented reality computer-assisted spine surgery system for percutaneous vertebroplasty. Eur Spine J 2020 Jul;29(7):1590-1596. [CrossRef] [Medline]
  8. Zhuang Y, Sun J, Liu J. Diagnosis of chronic kidney disease by three-dimensional contrast-enhanced ultrasound combined with augmented reality medical technology. J Healthc Eng 2021 Mar 16;2021:5542822 [FREE Full text] [CrossRef] [Medline]
  9. Tang KS, Cheng DL, Mi E, Greenberg PB. Augmented reality in medical education: a systematic review. Can Med Educ J 2020 Mar 16;11(1):e81-e96 [FREE Full text] [CrossRef] [Medline]
  10. Lee LN, Kim MJ, Hwang WJ. Potential of augmented reality and virtual reality technologies to promote wellbeing in older adults. Appl Sci (Basel) 2019 Aug 30;9(17):3556 [FREE Full text] [CrossRef]
  11. Yeung AWK, Tosevska A, Klager E, Eibensteiner F, Laxar D, Stoyanov J, et al. Virtual and augmented reality applications in medicine: Analysis of the scientific literature. J Med Internet Res 2021 Feb 10;23(2):e25499 [FREE Full text] [CrossRef] [Medline]
  12. Juanes-Méndez JA, Marcos-Pablos S, Velasco-Marcos MA, Izard SG. Medical learning through simulations with immersive virtual reality and augmented reality devices. In: Technological Adoption and Trends in Health Sciences Teaching, Learning, and Practice. Hershey, Pennsylvania: IGI Global; 2022.
  13. Kamphuis C, Barsom E, Schijven M, Christoph N. Augmented reality in medical education? Perspect Med Educ 2014 Sep;3(4):300-311 [FREE Full text] [CrossRef] [Medline]
  14. Gerup J, Soerensen CB, Dieckmann P. Augmented reality and mixed reality for healthcare education beyond surgery: an integrative review. Int J Med Educ 2020 Jan 18;11:1-18 [FREE Full text] [CrossRef] [Medline]
  15. Duarte ML, Santos LR, Júnior JBG, Peccin MS. Learning anatomy by virtual reality and augmented reality. A scope review. Morphologie 2020 Dec;104(347):254-266. [CrossRef] [Medline]
  16. Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc 2016 Oct;30(10):4174-4183 [FREE Full text] [CrossRef] [Medline]
  17. Eckert M, Volmerg JS, Friedrich CM. Augmented reality in medicine: Systematic and bibliographic review. JMIR Mhealth Uhealth 2019 Apr 26;7(4):e10967 [FREE Full text] [CrossRef] [Medline]
  18. Chen FQ, Leng YF, Ge JF, Wang DW, Li C, Chen B, et al. Effectiveness of virtual reality in nursing education: Meta-analysis. J Med Internet Res 2020 Sep 15;22(9):e18290 [FREE Full text] [CrossRef] [Medline]
  19. Kononowicz AA, Woodham LA, Edelbring S, Stathakarou N, Davies D, Saxena N, et al. Virtual patient simulations in health professions education: Systematic review and meta-analysis by the Digital Health Education Collaboration. J Med Internet Res 2019 Jul 02;21(7):e14676 [FREE Full text] [CrossRef] [Medline]
  20. Williams MA, McVeigh J, Handa AI, Lee R. Augmented reality in surgical training: a systematic review. Postgrad Med J 2020 Sep;96(1139):537-542. [CrossRef] [Medline]
  21. Baashar Y, Alhussian H, Patel A, Alkawsi G, Alzahrani AI, Alfarraj O, et al. Customer relationship management systems (CRMS) in the healthcare environment: A systematic literature review. Comput Stand Interfaces 2020 Aug;71:103442 [FREE Full text] [CrossRef] [Medline]
  22. Moher D, Altman DG, Liberati A, Tetzlaff J. PRISMA statement. Epidemiology 2011 Jan;22(1):128; author reply 128. [CrossRef] [Medline]
  23. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions. Hoboken, NJ; Chichester, West Sussex: Wiley-Blackwell; 2019:1119536618.
  24. Balian S, McGovern SK, Abella BS, Blewer AL, Leary M. Feasibility of an augmented reality cardiopulmonary resuscitation training system for health care providers. Heliyon 2019 Aug 02;5(8):e02205 [FREE Full text] [CrossRef] [Medline]
  25. Kim SK, Lee Y, Yoon H, Choi J. Adaptation of extended reality smart glasses for core nursing skill training among undergraduate nursing students: Usability and feasibility study. J Med Internet Res 2021 Mar 02;23(3):e24313 [FREE Full text] [CrossRef] [Medline]
  26. Pantziaras I, Fors U, Ekblad S. Training with virtual patients in transcultural psychiatry: do the learners actually learn? J Med Internet Res 2015 Feb 16;17(2):e46 [FREE Full text] [CrossRef] [Medline]
  27. Albrecht UV, Folta-Schoofs K, Behrends M, von Jan U. Effects of mobile augmented reality learning compared to textbook learning on medical students: randomized controlled pilot study. J Med Internet Res 2013 Aug 20;15(8):e182 [FREE Full text] [CrossRef] [Medline]
  28. Noll C, von Jan U, Raap U, Albrecht UV. Mobile augmented reality as a feature for self-oriented, blended learning in medicine: Randomized controlled trial. JMIR Mhealth Uhealth 2017 Sep 14;5(9):e139 [FREE Full text] [CrossRef] [Medline]
  29. Siebert JN, Ehrler F, Gervaix A, Haddad K, Lacroix L, Schrurs P, et al. Adherence to AHA guidelines when adapted for augmented reality glasses for assisted pediatric cardiopulmonary resuscitation: A randomized controlled trial. J Med Internet Res 2017 May 29;19(5):e183 [FREE Full text] [CrossRef] [Medline]
  30. Schiffeler N, Stehling V, Hees F, Isenhardt I. Effects of collaborative augmented reality on communication and interaction in learning contexts – Results of a qualitative pre-study. 2019 Jun 15 Presented at: 2019 ASEE Annual Conference & Exposition; June 15-19, 2019; Tampa, Florida. [CrossRef]
  31. Kotcherlakota S, Pelish P, Hoffman K, Kupzyk K, Rejda P. Augmented reality technology as a teaching strategy for learning pediatric asthma management: Mixed methods study. JMIR Nurs 2020 Dec 02;3(1):e23963 [FREE Full text] [CrossRef] [Medline]
  32. Savela N, Oksanen A, Kaakinen M, Noreikis M, Xiao Y. Does augmented reality affect sociability, entertainment, and learning? A field experiment. Appl Sci (Basel) 2020 Feb 19;10(4):1392 [FREE Full text] [CrossRef]
  33. Muangpoon T, Osgouei RH, Escobar-Castillejos D, Kontovounisios C, Bello F. Augmented reality system for digital rectal examination training and assessment: System validation. J Med Internet Res 2020 Aug 13;22(8):e18637 [FREE Full text] [CrossRef] [Medline]
  34. Wang S, Parsons M, Stone-McLean J, Rogers P, Boyd S, Hoover K, et al. Augmented reality as a telemedicine platform for remote procedural training. Sensors (Basel) 2017 Oct 10;17(10):2294 [FREE Full text] [CrossRef] [Medline]
  35. Ingrassia PL, Mormando G, Giudici E, Strada F, Carfagna F, Lamberti F, et al. Augmented reality learning environment for basic life support and defibrillation training: Usability study. J Med Internet Res 2020 May 12;22(5):e14910 [FREE Full text] [CrossRef] [Medline]
  36. Vidal-Balea A, Blanco-Novoa Ó, Fraga-Lamas P, Fernández-Caramés TM. Developing the next generation of augmented reality games for pediatric healthcare: An open-source collaborative framework based on ARCore for implementing teaching, training and monitoring applications. Sensors (Basel) 2021 Mar 07;21(5):1865 [FREE Full text] [CrossRef] [Medline]
  37. Üstün U, Eryılmaz A. A research methodology to conduct effective research syntheses: Meta-analysis. Education and Science 2014;39(174):1-32 [FREE Full text] [CrossRef]
  38. Üstün U. To what extent is problem-based learning effective as compared to traditional teaching in science education? A meta-analysis study. OpenMETU. 2012 Sep.   URL: [accessed 2022-05-19]
  39. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis, 2nd Edition. Hoboken, NJ: John Wiley & Sons; 2021.

AR: augmented reality
PICO: Population, Intervention, Comparison, Outcomes
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RQ: research question
VR: virtual reality

Edited by N Zary; submitted 06.08.21; peer-reviewed by L Suppan, P Haubruck; comments to author 12.10.21; revised version received 12.03.22; accepted 22.04.22; published 05.07.22


©Yahia Baashar, Gamal Alkawsi, Wan Nooraishya Wan Ahmad, Hitham Alhussian, Ayed Alwadain, Luiz Fernando Capretz, Areej Babiker, Adnan Alghail. Originally published in JMIR Serious Games (, 05.07.2022.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Serious Games, is properly cited. The complete bibliographic information, a link to the original publication on, as well as this copyright and license information must be included.